HOME

TheInfoList



OR:

In
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, the Heawood conjecture or Ringel–Youngs theorem gives a
lower bound In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is greater than or equal to every element of . Dually, a lower bound or minorant of is defined to be an elemen ...
for the number of colors that are necessary for graph coloring on a surface of a given genus. For surfaces of genus 0, 1, 2, 3, 4, 5, 6, 7, ..., the required number of colors is 4, 7, 8, 9, 10, 11, 12, 12, .... , the chromatic number or Heawood number. The conjecture was formulated in 1890 by
Percy John Heawood Percy John Heawood (8 September 1861 – 24 January 1955) was a British mathematician, who concentrated on graph colouring. Life He was the son of the Rev. John Richard Heawood of Newport, Shropshire, and his wife Emily Heath, daughter of t ...
and proven in 1968 by
Gerhard Ringel Gerhard Ringel (October 28, 1919 in Kollnbrunn, Austria – June 24, 2008 in Santa Cruz, California) was a German mathematician. He was one of the pioneers in graph theory and contributed significantly to the proof of the Heawood conjecture (now ...
and Ted Youngs. One case, the
non-orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is ...
Klein bottle, proved an exception to the general formula. An entirely different approach was needed for the much older problem of finding the number of colors needed for the plane or sphere, solved in 1976 as the four color theorem by Haken and Appel. On the sphere the lower bound is easy, whereas for higher genera the upper bound is easy and was proved in Heawood's original short paper that contained the conjecture. In other words, Ringel, Youngs and others had to construct extreme examples for every genus g = 1,2,3,.... If g = 12s + k, the genera fall into 12 cases according as k = 0,1,2,3,4,5,6,7,8,9,10,11. To simplify, suppose that case k has been established if only a finite number of g's of the form 12s + k are in doubt. Then the years in which the twelve cases were settled and by whom are the following: *1954, Ringel: case 5 *1961, Ringel: cases 3,7,10 *1963, Terry, Welch, Youngs: cases 0,4 *1964, Gustin, Youngs: case 1 *1965, Gustin: case 9 *1966, Youngs: case 6 *1967, Ringel, Youngs: cases 2,8,11 The last seven sporadic exceptions were settled as follows: *1967, Mayer: cases 18, 20, 23 *1968, Ringel, Youngs: cases 30, 35, 47, 59, and the conjecture was proved.


Formal statement

Percy John Heawood Percy John Heawood (8 September 1861 – 24 January 1955) was a British mathematician, who concentrated on graph colouring. Life He was the son of the Rev. John Richard Heawood of Newport, Shropshire, and his wife Emily Heath, daughter of t ...
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1 ...
d in 1890 that for a given genus ''g'' > 0, the minimum number of colors necessary to color all graphs drawn on an orientable surface of that genus (or equivalently to color the regions of any partition of the surface into simply connected regions) is given by :\gamma (g) = \left \lfloor \frac \right \rfloor, where \left \lfloor x \right \rfloor is the floor function. Replacing the genus by the Euler characteristic, we obtain a formula that covers both the orientable and non-orientable cases, : \gamma(\chi) = \left \lfloor \frac2 \right \rfloor. This relation holds, as Ringel and Youngs showed, for all surfaces except for the Klein bottle. Philip Franklin (1930) proved that the Klein bottle requires at most 6 colors, rather than 7 as predicted by the formula. The Franklin graph can be drawn on the Klein bottle in a way that forms six mutually-adjacent regions, showing that this bound is tight. The upper bound, proved in Heawood's original short paper, is based on a greedy coloring algorithm. By manipulating the Euler characteristic, one can show that every graph embedded in the given surface must have at least one vertex of degree less than the given bound. If one removes this vertex, and colors the rest of the graph, the small number of edges incident to the removed vertex ensures that it can be added back to the graph and colored without increasing the needed number of colors beyond the bound. In the other direction, the proof is more difficult, and involves showing that in each case (except the Klein bottle) a
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is ...
with a number of vertices equal to the given number of colors can be embedded on the surface.


Example

The torus has ''g'' = 1, so χ = 0. Therefore, as the formula states, any subdivision of the torus into regions can be colored using at most seven colors. The illustration shows a subdivision of the torus in which each of seven regions are adjacent to each other region; this subdivision shows that the bound of seven on the number of colors is tight for this case. The boundary of this subdivision forms an embedding of the Heawood graph onto the torus.


References

* * *


External links

*{{mathworld , urlname = HeawoodConjecture , title = Heawood Conjecture Conjectures that have been proved Graph coloring Topological graph theory Theorems in graph theory