H4 polytope
   HOME

TheInfoList



OR:

In 4-dimensional
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, there are 15 uniform polytopes with H4 symmetry. Two of these, the
120-cell In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, heca ...
and
600-cell In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from ...
, are regular.


Visualizations

Each can be visualized as symmetric orthographic projections in
Coxeter plane In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there ar ...
s of the H4 Coxeter group, and other subgroups. The 3D picture are drawn as
Schlegel diagram In geometry, a Schlegel diagram is a projection of a polytope from \mathbb^d into \mathbb^ through a point just outside one of its facets. The resulting entity is a polytopal subdivision of the facet in \mathbb^ that, together with the orig ...
projections, centered on the cell at pos. 3, with a consistent orientation, and the 5 cells at position 0 are shown solid.


Coordinates

The coordinates of uniform polytopes from the H4 family are complicated. The regular ones can be expressed in terms of the
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( ...
φ = (1 + )/2 and σ = (3 + 1)/2. Coxeter expressed them as 5-dimensional coordinates.Coxeter, ''Regular and Semi-Regular Polytopes II'', ''Four-dimensional polytopes', p.296-298


References

*
J.H. Conway John Horton Conway (26 December 1937 – 11 April 2020) was an English people, English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to ...
and M.J.T. Guy: ''Four-Dimensional Archimedean Polytopes'', Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965 *
John H. Conway John Horton Conway (26 December 1937 – 11 April 2020) was an English people, English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to ...
, Heidi Burgiel,
Chaim Goodman-Strauss Chaim Goodman-Strauss (born June 22, 1967 in Austin TX) is an American mathematician who works in convex geometry, especially aperiodic tiling. He is on the faculty of the University of Arkansas and is a co-author with John H. Conway of ''The Sym ...
, ''The Symmetries of Things'' 2008, (Chapter 26) * H.S.M. Coxeter: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 * Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966


Notes


External links

*
Uniform, convex polytopes in four dimensions:
Marco Möller ** * ** * H4 uniform polytopes with coordinates
rrttrrrrtrtr2tt03t013t013t0123grand antiprism
{{Polytopes 4-polytopes