Hyperelliptic Integral
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, ''differential of the first kind'' is a traditional term used in the theories of
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
s (more generally,
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a com ...
s) and
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane c ...
s (more generally,
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Mo ...
), for everywhere-regular differential 1-forms. Given a complex manifold ''M'', a differential of the first kind ω is therefore the same thing as a 1-form that is everywhere
holomorphic In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
; on an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Mo ...
''V'' that is
non-singular In the mathematical field of algebraic geometry, a singular point of an algebraic variety is a point that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In cas ...
it would be a
global section In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ...
of the
coherent sheaf In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with refe ...
Ω1 of
Kähler differential In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic ge ...
s. In either case the definition has its origins in the theory of
abelian integral In mathematics, an abelian integral, named after the Norwegian mathematician Niels Henrik Abel, is an integral in the complex plane of the form :\int_^z R(x,w) \, dx, where R(x,w) is an arbitrary rational function of the two variables x and w, whi ...
s. The dimension of the space of differentials of the first kind, by means of this identification, is the
Hodge number In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every cohom ...
:''h''1,0. The differentials of the first kind, when integrated along paths, give rise to integrals that generalise the
elliptic integral In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising in ...
s to all curves over the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s. They include for example the hyperelliptic integrals of type : \int\frac where ''Q'' is a
square-free polynomial In mathematics, a square-free polynomial is a polynomial defined over a field (or more generally, an integral domain) that does not have as a divisor any square of a non-constant polynomial. A univariate polynomial is square free if and only if it ...
of any given degree > 4. The allowable power ''k'' has to be determined by analysis of the possible pole at the
point at infinity In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Adj ...
on the corresponding
hyperelliptic curve In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus ''g'' > 1, given by an equation of the form y^2 + h(x)y = f(x) where ''f''(''x'') is a polynomial of degree ''n'' = 2''g'' + 1 > 4 or ''n'' = 2''g'' + 2 > 4 with ''n'' dist ...
. When this is done, one finds that the condition is :''k'' ≤ ''g'' − 1, or in other words, ''k'' at most 1 for degree of ''Q'' 5 or 6, at most 2 for degree 7 or 8, and so on (as ''g'' = 1+ deg ''Q'')/2. Quite generally, as this example illustrates, for a
compact Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versio ...
or
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane c ...
, the Hodge number is the
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In the hierarchy of biological classification, genus com ...
''g''. For the case of
algebraic surface In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of di ...
s, this is the quantity known classically as the
irregularity Irregular, irregulars or irregularity may refer to any of the following: Astronomy * Irregular galaxy * Irregular moon * Irregular variable, a kind of star Language * Irregular inflection, the formation of derived forms such as plurals in ...
''q''. It is also, in general, the dimension of the
Albanese variety In mathematics, the Albanese variety A(V), named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve. Precise statement The Albanese variety is the abelian variety A generated by a variety V taking a given point of V to t ...
, which takes the place of the
Jacobian variety In mathematics, the Jacobian variety ''J''(''C'') of a non-singular algebraic curve ''C'' of genus ''g'' is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of ''C'', hence an abelian vari ...
.


Differentials of the second and third kind

The traditional terminology also included differentials of the second kind and of the third kind. The idea behind this has been supported by modern theories of
algebraic differential form Algebraic may refer to any subject related to algebra in mathematics and related branches like algebraic number theory and algebraic topology. The word algebra itself has several meanings. Algebraic may also refer to: * Algebraic data type, a data ...
s, both from the side of more
Hodge theory In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every cohom ...
, and through the use of morphisms to
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Man ...
s. The
Weierstrass zeta function In mathematics, the Weierstrass functions are special functions of a complex variable that are auxiliary to the Weierstrass elliptic function. They are named for Karl Weierstrass. The relation between the sigma, zeta, and \wp functions is analogou ...
was called an ''integral of the second kind'' in
elliptic function In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those in ...
theory; it is a
logarithmic derivative In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function ''f'' is defined by the formula \frac where f' is the derivative of ''f''. Intuitively, this is the infinitesimal relative change in ''f''; ...
of a
theta function In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theo ...
, and therefore has
simple pole In complex analysis (a branch of mathematics), a pole is a certain type of singularity (mathematics), singularity of a complex-valued function of a complex number, complex variable. In some sense, it is the simplest type of singularity. Technical ...
s, with integer residues. The decomposition of a (
meromorphic In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are pole (complex analysis), poles ...
) elliptic function into pieces of 'three kinds' parallels the representation as (i) a constant, plus (ii) a linear combination of translates of the Weierstrass zeta function, plus (iii) a function with arbitrary poles but no residues at them. The same type of decomposition exists in general, ''mutatis mutandis'', though the terminology is not completely consistent. In the algebraic group (
generalized Jacobian In algebraic geometry a generalized Jacobian is a commutative algebraic group associated to a curve with a divisor, generalizing the Jacobian variety of a complete curve. They were introduced by Maxwell Rosenlicht in 1954, and can be used to stu ...
) theory the three kinds are
abelian varieties In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular function ...
,
algebraic tori Algebraic may refer to any subject related to algebra in mathematics and related branches like algebraic number theory and algebraic topology. The word algebra itself has several meanings. Algebraic may also refer to: * Algebraic data type, a dat ...
, and
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relate ...
s, and the decomposition is in terms of a
composition series In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many natura ...
. On the other hand, a meromorphic abelian differential of the ''second kind'' has traditionally been one with residues at all poles being zero. One of the third kind is one where all poles are simple. There is a higher-dimensional analogue available, using the
Poincaré residue In mathematics, the Poincaré residue is a generalization, to several complex variables and complex manifold theory, of the residue at a pole of complex function theory. It is just one of a number of such possible extensions. Given a hypersurface X ...
.


See also

*
Logarithmic form In contexts including complex manifolds and algebraic geometry, a logarithmic differential form is a meromorphic differential form with poles of a certain kind. The concept was introduced by Deligne. Let ''X'' be a complex manifold, ''D'' ⊂ ''X'' ...


References

* {{DEFAULTSORT:Differential Of The First Kind Complex manifolds Algebraic geometry