HOME

TheInfoList



OR:

Hyperaemia (also hyperemia) is the increase of blood flow to different tissues in the body. It can have medical implications but is also a regulatory response, allowing change in blood supply to different tissues through
vasodilation Vasodilation is the widening of blood vessels. It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. The process is the opposite of vasoconstriction, ...
. Clinically, hyperaemia in tissues manifests as
erythema Erythema (from the Greek , meaning red) is redness of the skin or mucous membranes, caused by hyperemia (increased blood flow) in superficial capillaries. It occurs with any skin injury, infection, or inflammation. Examples of erythema not asso ...
(redness of the skin) because of the engorgement of vessels with oxygenated blood. Hyperaemia can also occur due to a fall in atmospheric pressure outside the body. The term is from Greek ὑπέρ (''hupér'') 'over' + αἷμα (''haîma'') 'blood'.


Regulation of blood flow

Functional hyperaemia is an increase in blood flow to a tissue due to the presence of metabolites and a change in general conditions. When a tissue increases activity there is a well-characterized fall in the partial pressure of oxygen and pH, an increase in partial pressure of carbon dioxide, and a rise in temperature and the concentration of potassium ions. The mechanisms of
vasodilation Vasodilation is the widening of blood vessels. It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. The process is the opposite of vasoconstriction, ...
are predominantly local metabolites and myogenic effects. Increased metabolic activity of the tissue leads to a local increase in the extracellular concentration of such chemicals as adenosine, carbon dioxide, and lactic acid, and a decrease in oxygen and pH. These changes cause significant vasodilation. The reverse occurs when metabolic activity is slowed and these substances wash out of the tissues. The myogenic effect refers to the inherent attempt of vascular smooth muscle surrounding arterioles and arteries to maintain the tension in the wall of these blood vessels by dilating when internal pressure is reduced and to constrict when wall tension increases.


Functional hyperaemia

Functional hyperaemia, metabolic hyperaemia, arterial hyperaemia or active hyperaemia, is the increased
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the c ...
flow that occurs when tissue is active. Hyperaemia is likely mediated by the increased synthesis and/or release of vasodilatory agents during periods of heightened cellular metabolism. The increase in cellular metabolism causes the increase in vasoactive metabolic byproducts. Some of the putative vasodilatory agents (associated with metabolism) include, but are not limited to: carbon dioxide (CO2), hydrogen ion (H+), potassium (K+),
adenosine Adenosine ( symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside building ...
(ADO),
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its che ...
(NO)). These vasodilators released from the tissue act on local
arterioles An arteriole is a small-diameter blood vessel in the microcirculation that extends and branches out from an artery and leads to capillaries. Arterioles have muscular walls (usually only one to two layers of smooth muscle cells) and are the primar ...
causing vasodilation, this causes a decrease in vascular resistance and allows an increase in blood flow to be directed toward the capillary bed of the active tissue. This increase allows the blood to serve the increased metabolic demand of the tissue and prevents a mismatch between O2-demand O2-supply. Recent research has suggested that the locally produced vasodilators may be acting in a redundant manner, in which the antagonism of one dilator, be it pharmacologically or pathologically, may be compensated for by another in order to preserve blood flow to tissue. While the locus of blood flow control (at least in skeletal muscle tissue) is widely thought to reside at the level of the arteriole, research has begun to suggest that capillary
endothelial cells The endothelium is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and the rest of the vessel ...
may be coordinators of skeletal muscle blood flow during functional hyperaemia. It is thought that vasodilators (released from active muscle fibers) can stimulate a local capillary endothelial cells which, in turn, causes the conduction of a vasodilatory signal to upstream arterioles, this then elicits arteriolar vasodilation consequently, creating a pathway of least resistance so blood flow can be precisely direct to capillaries supplying the metabolically active tissue. Conversely, when a tissue is less metabolically active, it produces fewer metabolites which are simply washed away in blood flow. Since most of the common nutrients in the body are converted to
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
when they are metabolized, smooth muscle around blood vessels relax in response to increased concentrations of carbon dioxide within the blood and surrounding
interstitial fluid In cell biology, extracellular fluid (ECF) denotes all body fluid outside the cells of any multicellular organism. Total body water in healthy adults is about 60% (range 45 to 75%) of total body weight; women and the obese typically have a lower ...
. The relaxation of this smooth muscle results in vascular dilation and increased blood flow. Some tissues require oxygen and fuel more quickly or in greater quantities. Examples of tissues and organs that are known to have specialized mechanisms for functional hyperaemia include: * The
brain A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a v ...
through the
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. N ...
-dependent
haemodynamic response In haemodynamics, the body must respond to physical activities, external temperature, and other factors by homeostatically adjusting its blood flow to deliver nutrients such as oxygen and glucose to stressed tissues and allow them to function. ...
. * Penile
erection An erection (clinically: penile erection or penile tumescence) is a physiological phenomenon in which the penis becomes firm, engorged, and enlarged. Penile erection is the result of a complex interaction of psychological, neural, vascular, ...
tissue by release of
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its che ...
.


Reactive hyperaemia

Reactive hyperaemia, a sub-category of arterial hyperaemia, is the transient increase in organ blood flow that occurs following a brief period of
ischaemia Ischemia American and British English spelling differences#ae and oe, or ischaemia is a restriction in blood supply to any tissue (biology), tissue, Skeletal muscle, muscle group, or Organ (biology), organ of the body, causing a shortage of oxyg ...
. Following ischaemia there will be a shortage of oxygen and a build-up of
metabolic waste Metabolic wastes or excrements are substances left over from metabolic processes (such as cellular respiration) which cannot be used by the organism (they are surplus or toxic), and must therefore be excreted. This includes nitrogen compounds, ...
. This is commonly tested in the legs using
Buerger's test Buerger's test is used in an assessment of arterial sufficiency. It is named after Leo Buerger. The ''vascular angle'', which is also called ''Buerger's angle'', is the angle to which the leg has to be raised before it becomes pale, whilst lying d ...
. Reactive hyperaemia often occurs as a consequence of
Raynaud's phenomenon Raynaud syndrome, also known as Raynaud's phenomenon, eponymously named after the physician Auguste Gabriel Maurice Raynaud, who first described it in his doctoral thesis in 1862, is a medical condition in which the spasm of small arteries cau ...
, where the
vasospasm Vasospasm refers to a condition in which an arterial spasm leads to vasoconstriction. This can lead to tissue ischemia and tissue death (necrosis). Cerebral vasospasm may arise in the context of subarachnoid hemorrhage. Symptomatic vasospasm or ...
in the vasculature leads to ischaemia and
necrosis Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. Necrosis is caused by factors external to the cell or tissue, such as infection, or trauma which result in the unregulated dige ...
of tissue and thus a subsequent increase in blood flow to remove the waste products and clear up cell debris.


References


External links

{{Cardiovascular system symptoms and signs Symptoms and signs: Vascular