HOME

TheInfoList



OR:

Hydrographic survey is the science of measurement and description of features which affect maritime navigation, marine construction, dredging, offshore oil exploration/
offshore oil drilling Offshore drilling is a mechanical process where a wellbore is drilled below the seabed. It is typically carried out in order to explore for and subsequently extract petroleum that lies in rock formations beneath the seabed. Most commonly, the te ...
and related activities. Strong emphasis is placed on soundings, shorelines, tides, currents,
seabed The seabed (also known as the seafloor, sea floor, ocean floor, and ocean bottom) is the bottom of the ocean. All floors of the ocean are known as 'seabeds'. The structure of the seabed of the global ocean is governed by plate tectonics. Most of ...
and submerged obstructions that relate to the previously mentioned activities. The term ''hydrography'' is used synonymously to describe ''maritime
cartography Cartography (; from grc, χάρτης , "papyrus, sheet of paper, map"; and , "write") is the study and practice of making and using maps. Combining science, aesthetics and technique, cartography builds on the premise that reality (or an i ...
'', which in the final stages of the hydrographic process uses the raw data collected through hydrographic survey into information usable by the end user.
Hydrography Hydrography is the branch of applied sciences which deals with the measurement and description of the physical features of oceans, seas, coastal areas, lakes and rivers, as well as with the prediction of their change over time, for the primar ...
is collected under rules which vary depending on the acceptance authority. Traditionally conducted by ships with a
sounding line Depth sounding, often simply called sounding, is measuring the depth of a body of water. Data taken from soundings are used in bathymetry to make maps of the floor of a body of water, such as the seabed topography. Soundings were traditionally ...
or
echo sounding Echo sounding or depth sounding is the use of sonar for ranging, normally to determine the depth of water (bathymetry). It involves transmitting acoustic waves into water and recording the time interval between emission and return of a pulse; ...
, surveys are increasingly conducted with the aid of aircraft and sophisticated electronic sensor systems in shallow waters.


Organizations


National and International Maritime Hydrography

Hydrographic offices evolved from naval heritage and are usually found within national naval structures, for example Spain's Instituto Hidrográfico de la Marina. Coordination of those organizations and product standardization is voluntarily joined with the goal of improving hydrography and safe navigation is conducted by the
International Hydrographic Organization The International Hydrographic Organization (IHO) is an intergovernmental organisation representing hydrography. , the IHO comprised 98 Member States. A principal aim of the IHO is to ensure that the world's seas, oceans and navigable waters a ...
(IHO). The IHO publishes Standards and Specifications followed by its Member States as well as Memoranda of Understanding and Co-operative Agreements with hydrographic survey interests. The product of such hydrography is most often seen on nautical charts published by the national agencies and required by the International Maritime Organization (IMO), the Safety of Life at Sea (SOLAS) and national regulations to be carried on vessels for safety purposes. Increasingly those charts are provided and used in electronic form unders IHO standards.


Hydrographic survey conducted by non-national agencies

Governmental entities below the national level conduct or contract for hydrographic surveys for waters within their jurisdictions with both internal and contract assets. Such surveys commonly are conducted by national
organizations An organization or organisation (Commonwealth English; see spelling differences), is an entity—such as a company, an institution, or an association—comprising one or more people and having a particular purpose. The word is derived from ...
or under their supervision or the standards they have approved, particularly when the use is for the purposes of chart making and distribution or the dredging of state-controlled waters. In the United States, there is coordination with the National Hydrography Dataset in survey collection and publication. State environmental organizations publish hydrographic data relating to their mission.


Hydrographic survey by private organizations

Commercial entities also conduct large-scale hydrographic and
geophysical Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' some ...
surveying, particularly in the dredging, marine construction,
oil exploration Hydrocarbon exploration (or oil and gas exploration) is the search by petroleum geologists and geophysicists for deposits of hydrocarbons, particularly petroleum and natural gas, in the Earth using petroleum geology. Exploration methods Vis ...
, and drilling industries. Industrial entities installing submarine communications cables or power require detailed surveys of cable routes prior to installation and increasingly use acoustic imagery equipment previously found only in military applications when conducting their surveys. Specialized companies exist that have both the equipment and expertise to contract with both commercial and governmental entities to perform such surveys . Companies, universities, and investment groups will often fund hydrographic surveys of public waterways prior to developing areas adjacent those waterways. Survey firms are also contracted to survey in support of design and engineering firms that are under contract for large public projects. Private surveys are also conducted before dredging operations and after these operations are completed. Companies with large private slips, docks, or other waterfront installations have their facilities and the open water near their facilities surveyed regularly, as do islands in areas subject to variable erosion such as in the Maldives.


Hydrographic survey by crowdsourcing

Crowdsourcing also is entering hydrographic surveying, with projects such as OpenSeaMap
TeamSurv
and ARGUS. Here, volunteer vessels record position, depth, and time data using their standard navigation instruments, and then the data is post-processed to account for speed of sound, tidal, and other corrections. With this approach there is no need for a specific survey vessel, or for professionally qualified surveyors to be on board, as the expertise is in the data processing that occurs once the data is uploaded to the server after the voyage. Apart from obvious cost savings, this also gives a continuous survey of an area, but the drawbacks are time in recruiting observers and getting a high enough density and quality of data. Although sometimes accurate to 0.1 – 0.2m, this approach cannot substitute for a rigorous systematic survey, where this is required. Nevertheless, the results are often more than adequate for many requirements where high resolution, high accuracy surveys are not required or are unaffordable.


Methods


Lead lines, sounding poles, and single-beam echosounders

The history of hydrographic surveying dates almost as far back as that of
sailing Sailing employs the wind—acting on sails, wingsails or kites—to propel a craft on the surface of the ''water'' (sailing ship, sailboat, raft, windsurfer, or kitesurfer), on ''ice'' (iceboat) or on ''land'' (land yacht) over a chosen cou ...
. For many centuries, a hydrographic survey required the use of lead lines – ropes or lines with depth markings attached to lead weights to make one end sink to the bottom when lowered over the side of a ship or boat – and sounding poles, which were poles with depth markings which could be thrust over the side until they touched bottom. In either case, the depths measured had to be read manually and recorded, as did the position of each measurement with regard to mapped reference points as determined by three-point sextant fixes. The process was labor-intensive and time-consuming and, although each individual depth measurement could be accurate, even a thorough survey as a practical matter could include only a limited number of sounding measurements relative to the area being surveyed, inevitably leaving gaps in coverage between single soundings. Single-beam
echosounder Echo sounding or depth sounding is the use of sonar for ranging, normally to determine the depth of water (bathymetry). It involves transmitting acoustic waves into water and recording the time interval between emission and return of a pulse; ...
s and fathometers began to enter service in the 1930s which used
sonar Sonar (sound navigation and ranging or sonic navigation and ranging) is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, measure distances (ranging), communicate with or detect objects on o ...
to measure the depth beneath a vessel. This greatly increased the speed of acquiring sounding data over that possible with lead lines and sounding poles by allowing information on depths beneath a vessel to be gathered in a series of lines spaced at a specified distance. However, it shared the weakness of earlier methods by lacking depth information for areas in between the strips of sea bottom the vessel sounded.


Wire-drag surveying

In 1904, wire-drag surveys were introduced into hydrography, and the
United States Coast and Geodetic Survey The United States Coast and Geodetic Survey (abbreviated USC&GS), known from 1807 to 1836 as the Survey of the Coast and from 1836 until 1878 as the United States Coast Survey, was the first scientific agency of the United States Government. It ...
′s Nicholas H. Heck played a prominent role in developing and perfecting the technique between 1906 and 1916. In the wire-drag method, a wire attached to two ships or boats and set at a certain depth by a system of weights and buoys was dragged between two points. If the wire encountered an obstruction, it would become taut and form a "V" shape. The location of the "V" revealed the position of submerged rocks, wrecks, and other obstructions, while the depth at which the wire was set showed the depth at which the obstruction was encountered. This method revolutionized hydrographic surveying, as it allowed a quicker, less laborious, and far more complete survey of an area than did the use of lead lines and sounding poles. Wire drag operations.jpg, Wire-drag hydrographic survey operations (diagram),
U.S. Coast and Geodetic Survey The National Geodetic Survey (NGS) is a United States federal agency that defines and manages a national coordinate system, providing the foundation for transportation and communication; mapping and charting; and a large number of applications ...
, ca. 1920. Grunnslep fra 1932.jpg, Principle of sea surveying with two boats,
Norwegian Sea Survey, 1932. Grunnslep fra 1930.jpg, Technical details of tools used,
Norwegian Sea Survey, 1930.
Prior to the advent of
sidescan sonar Side-scan sonar (also sometimes called side scan sonar, sidescan sonar, side imaging sonar, side-imaging sonar and bottom classification sonar) is a category of sonar system that is used to efficiently create an image of large areas of the sea ...
, wire-drag surveying was the only method for searching large areas for obstructions and lost vessels and aircraft. Between 1906 and 1916, Heck expanded the capability of wire-drag systems from a relatively limited area to sweeps covering channels in width. The wire-drag technique was a major contribution to hydrographic surveying during much of the rest of the 20th century. So valuable was wire-drag surveying in the United States that for decades the U.S. Coast and Geodetic Survey, and later the National Oceanic and Atmospheric Administration, fielded a pair of sister ships of identical design specifically to work together on such surveys. USC&GS ''Marindin'' and USC&GS ''Ogden'' conducted wire-drag surveys together from 1919 to 1942, USC&GS ''Hilgard'' (ASV 82) and USC&GS ''Wainwright'' (ASV 83) took over from 1942 to 1967, and USC&GS ''Rude'' (ASV 90) (later NOAAS ''Rude'' (S 590)) and USC&GS ''Heck'' (ASV 91) (later NOAAS ''Heck'' (S 591)) worked together on wire-drag operations from 1967. The rise of new electronic technologies – sidescan sonar and multibeam swath systems – in the 1950s, 1960s and 1970s eventually made the wire-drag system obsolete. Sidescan sonar could create images of underwater obstructions with the same fidelity as
aerial photography Aerial photography (or airborne imagery) is the taking of photographs from an aircraft or other airborne platforms. When taking motion pictures, it is also known as aerial videography. Platforms for aerial photography include fixed-wing airc ...
, while multibeam systems could generate depth data for 100 percent of the bottom in a surveyed area. These technologies allowed a single vessel to do what wire-drag surveying required two vessels to do, and wire-drag surveys finally came to an end in the early 1990s. Vessels were freed from working together on wire-drag surveys, and in the U.S.
National Oceanic and Atmospheric Administration The National Oceanic and Atmospheric Administration (abbreviated as NOAA ) is an United States scientific and regulatory agency within the United States Department of Commerce that forecasts weather, monitors oceanic and atmospheric conditio ...
(NOAA), for example, ''Rude'' and ''Heck'' operated independently in their later years.


Multibeam Echosounders (MBES)

Explicit inclusion of phraseology like: ''"For all MBES surveys for LINZ, high resolution, geo-referenced backscatter intensity is to be logged and rendered as a survey deliverable."'' in a set of contract survey requirements, is a clear indication that the wider hydrographic community is embracing the benefits that can be accrued by employing MBES technology and, in particular, are accepting as a fact that a MBES which provides acoustic backscatter data is a valuable tool of the trade. The introduction of multispectral multibeam echosounders continues the trajectory of technological innovations providing the hydrographic surveying community with better tools for more rapidly acquiring better data for multiple uses. A multispectral multibeam echosounder is the culmination of many progressive advances in hydrography from the early days of acoustic soundings when the primary concern about the strength of returning echoes from the bottom was whether, or not, they would be sufficiently large to be noted (detected). The operating frequencies of the early acoustic sounders were primarily based on the ability of magneostrictive and piezoelectric materials whose physical dimensions could be modified by means of electrical current or voltage. Eventually it became apparent, that while the operating frequency of the early single vertical beam acoustic sounders had little, or no, bearing on the measured depths when the bottom was hard (composed primarily of sand, pebbles, cobbles, boulders, or rock), there was a noticeable frequency dependency of the measured depths when the bottom was soft (composed primarily of silt, mud or flocculent suspensions). It was observed that higher frequency single vertical beam echosounders could provide detectable echo amplitudes from high porosity sediments, even if those sediments appeared to be acoustically transparent at lower frequencies. In the late 1960s, single-beam hydrographic surveys were conducted using widely spaced track lines and the shallow (peak) soundings in the bottom data were retained in preference to deeper soundings in the sounding record. During that same time period, early side scan sonar was introduced into the operational practices of shallow water hydrographic surveying. The frequencies of the early side scan sonars were a matter of engineering design expediency and the most important aspect of the side scanning echoes was not the value of their amplitudes, but rather that the amplitudes were spatially variable. In fact, important information was deduced about the shape of the bottom and manmade items on the bottom, based on the regions where there were absences of detectable echo amplitudes (shadows) In 1979, in hopes of a technological solution to the problems of surveying in "floating mud", the Director of the National Ocean Survey (NOS) established a NOS study team to conduct investigations to determine the functional specifications for a replacement shallow water depth sounder. The outcome of the study was a class of vertical-beam depth sounders, which is still widely used. It simultaneously pinged at two acoustic frequencies, separated by more than 2 octaves, making depth and echo-amplitude measurements that were concurrent, both spatially and temporally, albeit at a single vertical grazing angle. The first MBES generation was dedicated to mapping the seafloor in deep water. Those pioneering MBES made little, or no, explicit use of the amplitudes, as their objective was to obtain accurate measurements of the bathymetry (representing both the peaks and deeps). Furthermore, their technical characteristics did not make it easy to observe spatial variations in the echo amplitudes. Subsequent to the early MBES bathymetric surveys and at the time when single frequency side scan sonar had begun to produce high quality images of the seabed that were capable of providing a degree of discrimination between different types of sediments, the potential of the echo amplitudes from a MBES was recognized. With Marty Klein's introduction of dual frequency (nominally 100 kHz and 500 kHz) side scan sonar, it was apparent that spatially and temporally coincident backscatter from any given seabed at those two widely separated acoustic frequencies, would likely provide two separate and unique images of that seascape. Admittedly, the along-track insonification and receiving beam patterns were different, and due to the absence of bathymetric data, the precise backscatter grazing angles were unknown. However, the overlapping sets of side scanning across-track grazing angles at the two frequencies were always the same. Following the grounding of the off
Cape Cod Cape Cod is a peninsula extending into the Atlantic Ocean from the southeastern corner of mainland Massachusetts, in the northeastern United States. Its historic, maritime character and ample beaches attract heavy tourism during the summer mont ...
,
Massachusetts Massachusetts (Massachusett: ''Muhsachuweesut Massachusett_writing_systems.html" ;"title="nowiki/> məhswatʃəwiːsət.html" ;"title="Massachusett writing systems">məhswatʃəwiːsət">Massachusett writing systems">məhswatʃəwiːsət'' En ...
, in 1992, the emphasis for shallow water surveying migrated toward full bottom coverage surveys by employing MBES with increasing operating frequencies to further improve the spatial resolution of the soundings. Given that side scan sonar, with its across-track fan-shaped swath of insonification, had successfully exploited the cross-track variation in echo amplitudes, to achieve high quality images of the seabed, it seemed a natural progression that the fan-shaped across-track pattern of insonification associated with the new monotone higher frequency shallow water MBES, might also be exploited for seabed imagery. Images acquired under the initial attempts at MBES bottom imaging were less than stellar, but fortunately improvements were forthcoming. Side scan sonar parses the continual echo returns from a receive beam that is perfectly aligned with the insonification beam using time-after-transmit, a technique that is independent of water depth and the cross-track beam opening angle of the sonar receive transducer. The initial attempt at multibeam imagery employed multiple receive beams, which only partially overlapped the MBES fan-shaped insonification beam, to segment the continual echo returns into intervals that were dependent on water depth and receiver cross-track beam opening angle. Consequently, the segmented intervals were non-uniform in both their length of time and time-after-transmit. The backscatter from each ping in each of the beam-parsed segments was reduced to a single value and assigned to the same geographical coordinates as those assigned to that beam's measured sounding. In subsequent modifications to MBES bottom imaging, the echo sequence in each of the beam-parsed intervals was designated as a snippet. On each ping, each snippet from each beam was additionally parsed according to time-after-transmit. Each of the echo amplitude measurements made within a snippet from a particular beam was assigned a geographical position based on linear interpolation between positions assigned to the soundings measured, on that ping, in the two adjacent cross-track beams. The snippet modification to MBES imagery significantly improved the quality of the imagery by increasing the number of echo amplitude measurements available to be rendered as a pixel in the image and also by having a more uniform spatial distribution of the pixels in the image which represented an actual measured echo amplitude. The introduction of multispectral multibeam echosounders continued the progressive advances in hydrography. In particular, multispectral multibeam echosounders not only provide "multiple look" depth measurements of a seabed, they also provide multispectral backscatter data that are spatially and temporally coincident with those depth measurements. A multispectral multibeam echosounder directly computes a position of origin for each of the backscatter amplitudes in the output data set. Those positions are based on the backscatter measurements themselves and not by interpolation from some other derived data set. Consequently, multispectral multibeam imagery is more acute compared to previous multibeam imagery. The inherent precision of the bathymetric data from a multispectral multibeam echosounder is also a benefit to those users that may be attempting to employ the acoustic backscatter angular response function to discriminate between different sediment types. Multispectral multibeam echosounders reinforces the fact that spatially and temporally coincident backscatter, from any given seabed, at widely separated acoustic frequencies provides separate and unique images of the seascape.Gaida, T, C., et al, (2019) Mapping the Seabed and Shallow Subsurface with Multi-Frequency Multibeam Echosounders, ''Remote Sens.'' 12, 52


Modern surveying

In suitable shallow-water areas lidar (light detection and ranging) may be used.http://www.nauticalcharts.noaa.gov/hsd/docs/NHSP_2009_TextOnly.pdf , NOAA Hydrographic Survey Priorities 2009 Edition Equipment can be installed on inflatable craft, such as Zodiacs, small craft,
autonomous underwater vehicle An autonomous underwater vehicle (AUV) is a robot that travels underwater without requiring input from an operator. AUVs constitute part of a larger group of undersea systems known as unmanned underwater vehicles, a classification that includ ...
s (AUVs),
unmanned underwater vehicle Unmanned underwater vehicles (UUV), sometimes known as underwater drones, are submersible vehicles that can operate underwater without a human occupant. These vehicles may be divided into two categories: remotely operated underwater vehicles (ROU ...
s (UUVs), Remote Operated Vehicles (ROV) or large ships, and can include sidescan, single-beam an
multibeam
equipment. At one time different data collection methods and standards were used in collecting hydrographic data for maritime safety and for scientific or engineering
bathymetric Bathymetry (; ) is the study of underwater depth of ocean floors (''seabed topography''), lake floors, or river floors. In other words, bathymetry is the underwater equivalent to hypsometry or topography. The first recorded evidence of water d ...
charts, but increasingly, with the aid of improved collection techniques and computer processing, the data is collected under one standard and extracted for specific use. After data is collected, it has to undergo post-processing. A massive amount of data is collected during the typical hydrographic survey, often several soundings per
square foot The square foot (plural square feet; abbreviated sq. ft, sf, or ft2; also denoted by '2) is an imperial unit and U.S. customary unit (non- SI, non-metric) of area, used mainly in the United States and partially in Canada, the United Kingdom, Bang ...
. Depending on the final use intended for the data (for example,
navigation chart A nautical chart is a graphic representation of a sea area and adjacent coastal regions. Depending on the scale of the chart, it may show depths of water and heights of land (topographic map), natural features of the seabed, details of the coa ...
s,
Digital Terrain Model A digital elevation model (DEM) or digital surface model (DSM) is a 3D computer graphics representation of elevation data to represent terrain or overlaying objects, commonly of a planet, moon, or asteroid. A "global DEM" refers to a discrete g ...
, volume calculation for dredging,
topography Topography is the study of the forms and features of land surfaces. The topography of an area may refer to the land forms and features themselves, or a description or depiction in maps. Topography is a field of geoscience and planetary sc ...
, or
bathymetry Bathymetry (; ) is the study of underwater depth of ocean floors (''seabed topography''), lake floors, or river floors. In other words, bathymetry is the underwater equivalent to hypsometry or topography. The first recorded evidence of water ...
) this data must be thinned out. It must also be corrected for errors (i.e., bad soundings,) and for the effects of tides
wavesheave
and
thermocline A thermocline (also known as the thermal layer or the metalimnion in lakes) is a thin but distinct layer in a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) in which temperature changes more drastically with ...
s (water temperature differences). Usually the surveyor has additional data collection equipment on site to record the data required for correcting the soundings. The final output of charts can be created with a combination of specialty charting software or a computer-aided design (CAD) package, usually
Autocad AutoCAD is a commercial computer-aided design (CAD) and drafting software application. Developed and marketed by Autodesk, AutoCAD was first released in December 1982 as a desktop app running on microcomputers with internal graphics controllers. ...
. Although the accuracy of crowd-sourced surveying can rarely reach the standards of traditional methods, the
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
s used rely on a high data density to produce final results that are more accurate than single measurements. A comparison of crowd-sourced surveys with multibeam surveys indicates an accuracy of crowd-sourced surveys of around plus or minus 0.1 to 0.2 meter (about 4 to 8 inches).


See also

* ** * * * * * * *


References


External links


International Hydrographic OrganizationNGA – Products and Services Available to the PublicUnited Kingdom Hydrographic OfficeArmada Esapñola – Instituto Hidrográfico de la MarinaNOAA Marine Operations (Survey Fleet)''Hydro International'' (Professional journal for hydrography with technical and industry news articles.)
NOAA maintains a massive database of survey results, charts, and dat


NOAA's Hydrographic Website

The Support for Hydrographer

TeamSurv – Crowd sourced hydrographic surveying
{{DEFAULTSORT:Hydrographic Survey Hydrography Surveying Field surveys