Hydrogenase Mimic
   HOME

TheInfoList



OR:

A hydrogenase mimic or bio-mimetic is an
enzyme mimic Enzyme mimic (or Artificial enzyme) is a branch of biomimetic chemistry, which aims at imitating the function of natural enzymes. An enzyme mimic is a small molecule complex that models the molecular structure, spectroscopic properties, or reactivit ...
of
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
s.


Bio-mimetic compounds inspired in hydrogenases

One of the more interesting applications of
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
s is to produce
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
, due its capacity to catalyze its redox reaction: In the field of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
production, the incorporation of chemical compounds in electrochemical devices to produce molecular
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
has been a topic of huge interest in the recent years due to the possibility of using
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
as a replacement of the fossil fuels as an energetic carrier. This approach of using materials inspired by natural models to do the same function as their natural counterparts is called bio-mimetic approach. Nowadays this approach has received a big impulse due to the availability of high-resolution crystal structures of several
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
s obtained with different techniques. The technical details of these
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
s are stored in electronic databases at disposition to who may be interested. This information has allowed scientists to determine the important parts of the enzyme necessary to catalyze the reaction and determine the pathway of the reaction in a very detailed way. Which allow to have a very good comprehension of what is necessary to catalyze the same reaction using artificial components.


Examples of bio-mimetic compounds inspired in hydrogenase

Several studies have demonstrated the possibility to develop chemical cells inspired by biological models to produce molecular
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
, for example: Selvaggi ''et al.'' explored the possibility to use energy captured by the PSII, developing for that goal, an organic-inorganic hybrid system replacing the
PSII Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the light-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants, algae, and cyanobacteria. Within the photosyste ...
protein complex by microspheres of TiO2 a photo-inducible compound. In order to get the
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
production, the TiO2 microspheres were covered with hydrogenases extracted from the marine thermophile ''
Pyrococcus furiosus ''Pyrococcus furiosus'' is a heterotrophic, strictly anaerobic, extremophilic, model species of archaea. It is classified as a hyperthermophile because it thrives best under extremely high temperatures, and is notable for having an optimum growt ...
'', in that way the energy of the light was captured by the TiO2 microspheres and used to generate protons and electrons from water with the subsequent production of 29 µmol de H2 hour−1. The obtained results from immobilization of
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
s on the surface of electrodes have demonstrated the viability of incorporating these enzymes in electrochemical cells, due to their ability to produce gaseous
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
through a redox reaction. (Hallenbeck and Benemann). This opens the possibility of using biomimetic compounds in electrodes to generate hydrogen. Until the present day several bio-mimetic compounds have been developed: Collman ''et al.'' produced ruthenium porphyrins, furthermore of the bio-mimetic compounds published by the research teams of Rauchfuss, Darensbourg and Pickett (in Artero and Fontecave) who developed bio-mimetic compounds of the e
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
. More recently Manor and Rauchfuss presented a very interesting mimic compound based in the iFehydrogenase with bidirectional properties, this compound has the characteristic that it carries two borane protected cyanide ligands at the iron atom. Some works about bio-mimetic compounds of
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
s are summarized in table 1. Table 1. Bio-mimetic compounds of hydrogenases However, obtaining bio-mimetic compounds able to
hydrogen production Hydrogen production is the family of industrial methods for generating hydrogen gas. As of 2020, the majority of hydrogen (∼95%) is produced from fossil fuels by steam reforming of natural gas and other light hydrocarbons, partial oxidation of h ...
on an industrial scale still is elusive. For that reason, the research of this topic is a hot spot in science which has taken the efforts of researchers around the world. Recently a review of the works done in bio-mimetic compounds was published by Schilter ''et al.''. Showing that some studies have got promising results in bio-mimetic compounds synthesized in laboratory.


Molecular modeling of bio-mimetic compounds of hydrogenases assisted with software

Recently the possibility of study such compounds using molecular modeling assisted by informatic software has opened new possibilities in the study of the redox reaction of biomimetic compounds. For example, using "Density Functional Theory" (DFT) computer modeling made it possible to propose a catalytic pathway of H2 binding on the catalytic center of
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
(Greco). Other example of the application of computational modeling in the study of
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
s is the work done by Breglia ''et al.'', whose results shows the chemical pathway of how oxygen inhibited the redox reaction of iFe
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
s.


Bio-mimetic compounds inspired in ehydrogenases

The Fe-only
hydrogenase A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below: Hydrogen uptake () is coupled to the reduction of electron acceptors such as oxygen, nitrate, sulfate, carbon dioxide (), and fumara ...
s are particularly common enzymes for synthetic
organometallic Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and so ...
chemists to mimic. This interest is motivated by the inclusion of high field
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
s like
cyano Cyanide is a naturally occurring, rapidly acting, toxic chemical that can exist in many different forms. In chemistry, a cyanide () is a chemical compound that contains a functional group. This group, known as the cyano group, consists of a ...
and CO (
metal carbonyl Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe ch ...
) in the first
coordination sphere In coordination chemistry, the first coordination sphere refers to the array of molecules and ions (the ligands) directly attached to the central metal atom. The second coordination sphere consists of molecules and ions that attached in various ...
of the pertinent di-iron cluster. Free cyano and carbonyl ligands are toxic to many biological systems. So, their inclusion in this system suggests they play pivotal roles. These high field ligands may ensure the iron centers at the active site remain in a
low spin Spin states when describing transition metal coordination complexes refers to the potential spin configurations of the central metal's d electrons. For several oxidation states, metals can adopt high-spin and low-spin configurations. The ambiguity o ...
state throughout the catalytic cycle. In addition, there is bridging di
thiolate In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl grou ...
between the two iron centers. This dithiolate has a three atom backbone in which the identity of the central atom is still undetermined; it models crystallographically as a CH2, NH or O group. There is reason to believe that this central atom is an
amine In chemistry, amines (, ) are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (), wherein one or more hydrogen atoms have been replaced by a substituen ...
which functions as a
Lewis base A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
. This amine combined with
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
ic iron centers makes the enzyme a
bifunctional catalyst Asymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity. Critically, this selectivity does not come from the target molecule itself, but from othe ...
which can split hydrogen between a proton acceptor and a hydride acceptor or produce hydrogen from a proton and hydride. Since none of the ligands on the iron centers are part of the enzyme's amino acid backbone, they can not be investigated through
site-directed mutagenesis Site-directed mutagenesis is a molecular biology method that is used to make specific and intentional mutating changes to the DNA sequence of a gene and any gene products. Also called site-specific mutagenesis or oligonucleotide-directed mutagenesi ...
, but
enzyme mimic Enzyme mimic (or Artificial enzyme) is a branch of biomimetic chemistry, which aims at imitating the function of natural enzymes. An enzyme mimic is a small molecule complex that models the molecular structure, spectroscopic properties, or reactivit ...
ry is a feasible approach.


Breadth

Many elegant structural mimics have been synthesized reproducing the atomic content and connectivity of the active site. The work by Pickett is a prime example of this field. The catalytic activity of these mimics do not however compare to the native enzyme. In contrast, functional mimics, also known as bio-inspired
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s, aim to reproduce only the functional features of an enzyme often through the use of different atomic content and connectivity from that found in the native enzymes. Functional mimics have made advances in the reactive chemistry and have implications on the mechanistic activity of the enzyme as well as acting as catalysts in their own right.Baffert, Carole; Artero, Vincent; Fontecave, Marc. ''Inorganic Chemistry'' 2007 ''46(5)'', 1817-1824.


References

{{reflist Biochemistry