HOME

TheInfoList



OR:

The hydrodynamic radius of a
macromolecule A macromolecule is a very large molecule important to biophysical processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. ...
or
colloid A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others exten ...
particle is R_. The macromolecule or colloid particle is a collection of N subparticles. This is done most commonly for
polymer A polymer (; Greek ''poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and ...
s; the subparticles would then be the units of the polymer. R_ is defined by : \frac \ \stackrel\ \frac \left\langle \sum_ \frac \right\rangle where r_ is the distance between subparticles i and j, and where the angular brackets \langle \ldots \rangle represent an ensemble average. The theoretical hydrodynamic radius R_ was originally an estimate by John Gamble Kirkwood of the Stokes radius of a polymer, and some sources still use ''hydrodynamic radius'' as a synonym for the Stokes radius. Note that in
biophysics Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. Biophysics covers all scales of biological organization, from molecular to organismic and populations. ...
, hydrodynamic radius refers to the Stokes radius, or commonly to the apparent Stokes radius obtained from size exclusion chromatography. The theoretical hydrodynamic radius R_ arises in the study of the dynamic properties of polymers moving in a
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
. It is often similar in magnitude to the radius of gyration.


Applications to aerosols

The mobility of non-spherical
aerosol An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be natural or anthropogenic. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of ant ...
particles can be described by the hydrodynamic radius. In the continuum limit, where the
mean free path In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
of the particle is negligible compared to a characteristic length scale of the particle, the hydrodynamic radius is defined as the radius that gives the same magnitude of the frictional force, \boldsymbol_d as that of a sphere with that radius, i.e. :\boldsymbol_d = 6\pi\mu R_\boldsymbol where \mu is the viscosity of the surrounding fluid, and \boldsymbol is the velocity of the particle. This is analogous to the Stokes' radius, however this is untrue as the mean free path becomes comparable to the characteristic length scale of the particulate - a correction factor is introduced such that the friction is correct over the entire Knudsen regime. As is often the case, the Cunningham correction factor C is used, where: :\boldsymbol_d = \frac, \quad \text \quad C = 1+\text(\alpha + \beta \text^), where \alpha, \beta, \text \gamma were found by Millikan to be: 1.234, 0.414, and 0.876 respectively.


Notes


References

* Grosberg AY and Khokhlov AR. (1994) ''Statistical Physics of Macromolecules'' (translated by Atanov YA), AIP Press. {{ISBN, 1-56396-071-0 Polymer physics