Hybrid Functional
   HOME

TheInfoList



OR:

Hybrid functionals are a class of approximations to the exchange
correlation In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics ...
energy
functional Functional may refer to: * Movements in architecture: ** Functionalism (architecture) ** Form follows function * Functional group, combination of atoms within molecules * Medical conditions without currently visible organic basis: ** Functional sy ...
in density functional theory (DFT) that incorporate a portion of exact exchange from Hartree–Fock theory with the rest of the exchange–correlation energy from other sources ('' ab initio'' or empirical). The exact exchange energy functional is expressed in terms of the Kohn–Sham orbitals rather than the density, so is termed an ''implicit'' density functional. One of the most commonly used versions is B3LYP, which stands for " Becke, 3-parameter, Lee–
Yang Yang may refer to: * Yang, in yin and yang, one half of the two symbolic polarities in Chinese philosophy * Korean yang, former unit of currency of Korea from 1892 to 1902 * YANG, a data modeling language for the NETCONF network configuration pr ...
Parr".


Origin

The hybrid approach to constructing density functional approximations was introduced by Axel Becke in 1993. Hybridization with Hartree–Fock (HF) exchange (also called exact exchange) provides a simple scheme for improving the calculation of many molecular properties, such as atomization energies, bond lengths and vibration frequencies, which tend to be poorly described with simple "ab initio" functionals.


Method

A hybrid exchange–correlation functional is usually constructed as a linear combination of the Hartree–Fock exact exchange functional : E_\text^\text = -\frac \sum_ \iint \psi_i^*(\mathbf r_1) \psi_j^*(\mathbf r_2) \frac \psi_j(\mathbf r_1) \psi_i(\mathbf r_2) \,d\mathbf r_1 \,d\mathbf r_2 and any number of exchange and correlation explicit density functionals. The parameters determining the weight of each individual functional are typically specified by fitting the functional's predictions to experimental or accurately calculated thermochemical data, although in the case of the "adiabatic connection functionals" the weights can be set ''a priori''.


B3LYP

For example, the popular B3LYP (Becke, 3-parameter, Lee–Yang–Parr) exchange-correlation functional is : E_\text^\text =(1-a) E_\text^\text + aE_\text^\text + b\vartriangle E_\text^\text + (1-c)E_\text^\text + c E_\text^\text , where a = 0.20, b = 0.72, and c = 0.81. E_\text^\text is a generalized gradient approximation: the Becke 88 exchange functional and the correlation functional of Lee, Yang and Parr for B3LYP, and E_\text^\text is the VWN local spin density approximation to the correlation functional. The three parameters defining B3LYP have been taken without modification from Becke's original fitting of the analogous B3PW91 functional to a set of atomization energies, ionization potentials, proton affinities, and total atomic energies.


PBE0

The PBE0 functional mixes the Perdew–Burke-Ernzerhof (PBE) exchange energy and Hartree–Fock exchange energy in a set 3:1 ratio, along with the full PBE correlation energy: : E_\text^\text = \frac E_\text^\text + \frac E_\text^\text + E_\text^\text, where E_\text^\text is the Hartree–Fock exact exchange functional, E_\text^\text is the PBE exchange functional, and E_\text^\text is the PBE correlation functional.


HSE

The HSE (Heyd–Scuseria–Ernzerhof) exchange–correlation functional uses an error-function-screened
Coulomb potential The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in ...
to calculate the exchange portion of the energy in order to improve computational efficiency, especially for metallic systems: : E_\text^ = a E_\text^\text(\omega) + (1 - a) E_\text^\text(\omega) + E_\text^\text(\omega) + E_\text^\text, where a is the mixing parameter, and \omega is an adjustable parameter controlling the short-rangeness of the interaction. Standard values of a = 1/4 and \omega = 0.2 (usually referred to as HSE06) have been shown to give good results for most systems. The HSE exchange–correlation functional degenerates to the PBE0 hybrid functional for \omega = 0. E_\text^\text(\omega) is the short-range Hartree–Fock exact exchange functional, E_\text^\text(\omega) and E_\text^\text(\omega) are the short- and long-range components of the PBE exchange functional, and E_\text^\text(\omega) is the PBE correlation functional.


Meta-hybrid GGA

The M06 suite of functionals is a set of four meta-hybrid GGA and meta-GGA DFT functionals. These functionals are constructed by empirically fitting their parameters, while being constrained to a uniform electron gas. The family includes the functionals M06-L, M06, M06-2X and M06-HF, with a different amount of exact exchange for each one. M06-L is fully local without HF exchange (thus it cannot be considered hybrid), M06 has 27% HF exchange, M06-2X 54% and M06-HF 100%. The advantages and usefulness of each functional are * M06-L: Fast, good for transition metals, inorganic and organometallics. * M06: For main group, organometallics, kinetics and non-covalent bonds. * M06-2X: Main group, kinetics. * M06-HF: Charge-transfer TD-DFT, systems where self-interaction is pathological. The suite gives good results for systems containing dispersion forces, one of the biggest deficiencies of standard DFT methods. Medvedev, Perdew, et al. say: "Despite their excellent performance for energies and geometries, we must suspect that modern highly parameterized functionals need further guidance from exact constraints, or exact density, or both"{{cite journal , title=Density functional theory is straying from the path toward the exact functional , doi = 10.1126/science.aah5975 , pages = 215–241 , last = Medvedev , first = Michael G. , author2=Ivan S. Bushmarinov , journal = Science , year = 2017, volume = 355 , issue = 6320 , pmid = 28059761 , bibcode = 2017Sci...355...49M , s2cid = 206652408


References

Density functional theory