HOME

TheInfoList



OR:

In
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
, an
-gonal In mathematics, a polygonal number is a number represented as dots or pebbles arranged in the shape of a regular polygon. The dots are thought of as alphas (units). These are one type of 2-dimensional figurate numbers. Definition and examples ...
hosohedron is a
tessellation A tessellation or tiling is the covering of a surface, often a plane (mathematics), plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to high-dimensional ...
of lunes on a
spherical surface A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the c ...
, such that each lune shares the same two
polar opposite A polar opposite is the diametrically opposite point of a circle or sphere. It is mathematically known as an antipodal point, or antipode when referring to the Earth. It is also an idiom often used to describe people and ideas that are opposites. ...
vertices. A regular -gonal hosohedron has
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
with each
spherical lune In spherical geometry, a spherical lune (or biangle) is an area on a sphere bounded by two half great circles which meet at antipodal points. It is an example of a digon, θ, with dihedral angle θ. The word "lune" derives from ''luna'', the L ...
having
internal angle In geometry, an angle of a polygon is formed by two sides of the polygon that share an endpoint. For a simple (non-self-intersecting) polygon, regardless of whether it is convex or non-convex, this angle is called an interior angle (or ) if ...
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before that c ...
s ( degrees).


Hosohedra as regular polyhedra

For a regular polyhedron whose Schläfli symbol is , the number of polygonal faces is : :N_2=\frac. The
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges c ...
s known to antiquity are the only integer solutions for ''m'' ≥ 3 and ''n'' ≥ 3. The restriction ''m'' ≥ 3 enforces that the polygonal faces must have at least three sides. When considering polyhedra as a
spherical tiling In geometry, a spherical polyhedron or spherical tiling is a tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons. Much of the theory of symmetrical polyhedra is most c ...
, this restriction may be relaxed, since
digon In geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visua ...
s (2-gons) can be represented as
spherical lune In spherical geometry, a spherical lune (or biangle) is an area on a sphere bounded by two half great circles which meet at antipodal points. It is an example of a digon, θ, with dihedral angle θ. The word "lune" derives from ''luna'', the L ...
s, having non-zero
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape A shape or figure is a graphics, graphical representation of an obje ...
. Allowing ''m'' = 2 makes :N_2=\frac=n, and admits a new infinite class of regular polyhedra, which are the hosohedra. On a spherical surface, the polyhedron is represented as ''n'' abutting lunes, with interior angles of . All these spherical lunes share two common vertices.


Kaleidoscopic symmetry

The 2n digonal
spherical lune In spherical geometry, a spherical lune (or biangle) is an area on a sphere bounded by two half great circles which meet at antipodal points. It is an example of a digon, θ, with dihedral angle θ. The word "lune" derives from ''luna'', the L ...
faces of a 2n-hosohedron, \, represent the fundamental domains of
dihedral symmetry in three dimensions In geometry, dihedral symmetry in three dimensions is one of three infinite sequences of point groups in three dimensions which have a symmetry group that as an abstract group is a dihedral group Dih''n'' (for ''n'' ≥ 2). Types Ther ...
: the cyclic symmetry C_, /math>, (*nn), order 2n. The reflection domains can be shown by alternately colored lunes as mirror images. Bisecting each lune into two spherical triangles creates an n-gonal
bipyramid A (symmetric) -gonal bipyramid or dipyramid is a polyhedron formed by joining an -gonal pyramid and its mirror image base-to-base. An -gonal bipyramid has triangle faces, edges, and vertices. The "-gonal" in the name of a bipyramid does not ...
, which represents the
dihedral symmetry In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, ge ...
D_, order 4n.


Relationship with the Steinmetz solid

The tetragonal hosohedron is topologically equivalent to the
bicylinder Steinmetz solid In geometry, a Steinmetz solid is the solid body obtained as the intersection of two or three cylinders of equal radius at right angles. Each of the curves of the intersection of two cylinders is an ellipse. The intersection of two cylinders ...
, the intersection of two cylinders at right-angles.


Derivative polyhedra

The
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ...
of the n-gonal hosohedron is the ''n''-gonal
dihedron A dihedron is a type of polyhedron, made of two polygon faces which share the same set of ''n'' edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat ...
, . The polyhedron is self-dual, and is both a hosohedron and a dihedron. A hosohedron may be modified in the same manner as the other polyhedra to produce a truncated variation. The truncated ''n''-gonal hosohedron is the n-gonal
prism Prism usually refers to: * Prism (optics), a transparent optical component with flat surfaces that refract light * Prism (geometry), a kind of polyhedron Prism may also refer to: Science and mathematics * Prism (geology), a type of sedimentary ...
.


Apeirogonal hosohedron

In the limit, the hosohedron becomes an
apeirogonal hosohedron In geometry, an apeirogonal hosohedron or infinite hosohedronConway (2008), p. 263 is a tiling of the plane consisting of two vertices at infinity. It may be considered an improper regular tiling of the Euclidean plane, with Schläfli symbol ...
as a 2-dimensional tessellation: :


Hosotopes

Multidimensional analogues in general are called hosotopes. A regular hosotope with
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
has two vertices, each with a
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
. The two-dimensional hosotope, , is a
digon In geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visua ...
.


Etymology

The term “hosohedron” appears to derive from the Greek ὅσος (''hosos'') “as many”, the idea being that a hosohedron can have “as many faces as desired”. It was introduced by Vito Caravelli in the eighteenth century.


See also

*
Polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on th ...
*
Polytope In elementary geometry, a polytope is a geometric object with flat sides (''faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an -d ...


References

* * Coxeter, H.S.M, ''Regular Polytopes'' (third edition), Dover Publications Inc.,


External links

* {{Tessellation Polyhedra Tessellation Regular polyhedra