Holographic optical element (HOE) is an optical component (mirror, lens, directional diffuser, etc.) that produces holographic images using principles of
diffraction
Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
. HOE is most commonly used in transparent displays, 3D imaging, and certain scanning technologies. The shape and structure of the HOE is dependent on the piece of hardware it is needed for, and the coupled wave theory is a common tool used to calculate the diffraction efficiency or grating volume that helps with the design of an HOE. Early concepts of the holographic optical element can be traced back to the mid-1900s, coinciding closely with the start of holography coined by Dennis Gabor. The application of 3D visualization and displays is ultimately the end goal of the HOE; however, the cost and complexity of the device has hindered the rapid development toward full 3D visualization. The HOE is also used in the development of
augmented reality(AR) by companies such as Google with Google Glass or in research universities that look to utilize HOEs to create 3D imaging without the use of eye-wear or head-wear. Furthermore, the ability of the HOE to allow for transparent displays have caught the attention of the US military in its development of better head-up displays (HUD) which is used to display crucial information for aircraft pilots.
Early development of HOE
The holographic optical element is closely linked to
holography
Holography is a technique that enables a wavefront to be recorded and later re-constructed. Holography is best known as a method of generating real three-dimensional images, but it also has a wide range of other applications. In principle, i ...
(science of making holograms), a term proposed by
Dennis Gabor
Dennis Gabor ( ; hu, Gábor Dénes, ; 5 June 1900 – 9 February 1979) was a Hungarian-British electrical engineer and physicist, most notable for inventing holography, for which he later received the 1971 Nobel Prize in Physics. He obtaine ...
in 1948. Since the idea of holography came around much has been done over the next few decades to try and create holograms. Around the 1960s,
Yuri Nikolaevich Denisyuk, a graduate student from Leningrad recognized that perhaps the wave front of light can be recorded as a standing wave in a photographic emulsion (light crystal) by using monochromatic light which can then reflect light back to reproduce the wave front. This essentially describes a holographic mirror (one of the first HOEs created) and fixed the issue of overlapping images. However, there was little practical use in Densiyuk's proposal and his colleagues dismissed his results. It was not until around the mid-1960s that Densiyuk's proposals resurfaced after some development from Emmett Leith and Juris Upatnieks. These two associates encoded and reconstructed images with a two step hologram process on photographic transparency. More experiments for holographic instruments such as the holographic stereogram developed by Lloyd Cross in the 1970s took the imaging process developed by Leith and Uptanieks and arranged them into vertical strips that were curved into a cylinder. These strips act as an aperture that light passes through, so when a viewer is to look through them, a 3D image can be seen. This demonstrates a very simple version of the diffraction concepts that are still utilized in the production of HOEs and a prototype for 3D glasses.
Classifications
Volume and thin HOEs
HOEs differ from other optical devices since they do not bend light with curvature and shape. Instead, they use diffraction principles (the distribution of light as it passes through an aperture) to diffract light waves by reconstructing a new wavefront using a corresponding material profile, making HOEs a type of diffraction optical element (DOE).
Two common types of HOEs that exist are volume HOEs and thin HOEs that are dependent. A thin HOE (one containing a thin layer of holographic grating) has a low diffraction efficiency, causing light beams to diffract in various directions. Conversely, volume HOE types (ones containing multiple layers of holographic gratings) are more efficient since there is more control on the direction of light due to a high diffractive efficiency. Most of the calculations done to create HOEs are usually the volume type HOEs.
Reflection-type and transmission-type HOEs
In addition to being a thin or volume HOE, an HOE can also be affected by positioning, which determines whether it is a transmission type or reflection type. These types of HOE are determined by the position of the object beam and reference beam in relation to the recording material of those beams: being on the same side indicates a transmission HOE and otherwise a reflection HOE. Some materials that are most commonly used in manufacturing HOEs include silver halide emulsion and dichromate gelatin.
Applications
Aerospace industry
In the early 2000s NASA conducted a test known as the Holographic Airborne Rotating
Lidar
Lidar (, also LIDAR, or LiDAR; sometimes LADAR) is a method for determining ranges (variable distance) by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. It can also be ...
Instrument Experiment(HARLIE) that utilized dichromate gelatin-based volume HOE sandwiched between float glass. The objective of the test was to find a new method of measuring surface and atmospheric parameters that could reduce the size, mass, and angular momentum of a spaceborne lidar systems.
The ability of HOE to be made as curved or bendable allows it to be used in the construction of
head up displays(HUD) or
head mount displays(HMD). Additionally, transparency can be achieved due to the selectivity of the volume grating that is used to diffract light at a specific incident angle or wavelength. This allows for the development of transparent head-up displays that convey information to aircraft pilots and conserves cockpit space. The US military is currently running tests on these new aircraft displays.
Next-level augmented reality
One use of a holographic optical element is in thin-profile
combiner
Power dividers (also power splitters and, when used in reverse, power combiners) and directional couplers are passive devices used mostly in the field of radio technology. They couple a defined amount of the electromagnetic power in a transmiss ...
lenses for
optical head-mounted displays.
A
reflective
Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The ' ...
volume hologram Volume holograms are holograms where the thickness of the recording material is much larger than the light wavelength used for recording. In this case diffraction of light from the hologram is possible only as Bragg diffraction, i.e., the light has ...
is used to extract progressively a
collimated
A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. However, diffraction p ...
image that was directed via
total internal reflection
Total internal reflection (TIR) is the optical phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflected b ...
in an
optical waveguide
An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light g ...
. The spectral and angular Bragg selectivity of the reflective volume hologram makes it particularly well-suited for a combiner using such light sources as
RGB
The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three addi ...
LED
A light-emitting diode (LED) is a semiconductor Electronics, device that Light#Light sources, emits light when Electric current, current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy i ...
s, providing both good see-through quality and good quality of the projected image. This usage has been implemented in
smart glasses
Smartglasses or smart glasses are eye or head-worn wearable computers that offer useful capabilities to the user. Many smartglasses include displays that add information alongside or to what the wearer sees. Alternatively, smartglasses are some ...
by
Konica Minolta
is a Japanese multinational technology company headquartered in Marunouchi, Chiyoda, Tokyo, with offices in 49 countries worldwide. The company manufactures business and industrial imaging products, including copiers, laser printers, multi-fu ...
and
Sony
, commonly stylized as SONY, is a Japanese multinational conglomerate corporation headquartered in Minato, Tokyo, Japan. As a major technology company, it operates as one of the world's largest manufacturers of consumer and professional ...
.
One of the goals in the design of an HOE is to try and create 3D visualization and the closest thing to that is augmented reality. The most common types of augmented reality come from head mount displays or glasses type displays, which can be considered the first type of 3D displays. Some examples of this type of display include Microsoft's HoloLens I, II, Google Glass, and Magic Leap. Items like these are often very expensive due to the high cost of materials used to produce HOEs.
There is also a second type of 3D visualization method that looks to replicate 3D objects through the creation of light fields. This type of visualization is closer to the ones seen in science fiction films or video games. Theoretical ways in which HOE can be used to bring the second type into fruition have been proposed. One proposal from affiliates of Beihang University and Sichuan University in 2019 suggests the use of micro lens array(MLA) HOE along with a display panel can create a 3D image. The proposed technology works by having the MLA type HOE form a spherical wave of arrays. Light is then distributed across this spherical array to form a 3D image. At its current state, the downside to the display is its low resolution quality.
Mathematical theories relevant for HOE construction
Coupled-wave theory
The
coupled-wave theory is a crucial part of the design of volume HOEs. It was first written about by Herwig Kolgenik in 1969 and contains mathematical models that determine the wavelength and angular selectivity(these factors determine how efficiently something may be able to adjust and transmit light at a certain angle or wavelength) of certain materials.
Several premises are given by the theory: it is valid for large diffraction efficiencies(measures how much optical power is diffracted at a given spot) and its derivation is done on the basis that the monochromatic light incident is near the Bragg angle (a small angle between a light beam and a plane of crystals) and perpendicular to the plane of incidence (a plane that contains both a ray of light and a surface that usually acts as a mirror at a certain point). Since the HOE works by diffracting light by constructing new waves, trying to get the thick HOE material to diffract light near the Bragg angle will make for more efficient wavefront construction.
These equations are used to adjust the hologram
grating
A grating is any regularly spaced collection of essentially identical, parallel, elongated elements. Gratings usually consist of a single set of elongated elements, but can consist of two sets, in which case the second set is usually perpendicul ...
volume and increase the
diffraction efficiency Diffraction efficiency is the performance of diffractive optical elements – especially diffraction gratings – in terms of power
Power most often refers to:
* Power (physics), meaning "rate of doing work"
** Engine power, the power put ...
of the HOE during production and can be applied to both transmission type HOEs or reflection type HOEs.
Classical grating equation accounts for the incident angle
, diffraction angle
, surface grating
, wavelength in free space
, and the integer order of diffraction
:
:
Bragg equation for plane transmission accounts for
as
and the
index of refraction
In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.
The refractive index determines how much the path of light is bent, or ...
as
:
:
Spectral bandwidth approximation accounts for the spectral bandwidth
and the grating thickness
:
:
Angular bandwidth approximation accounts for
as the angular bandwidth at
FWHM
In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. In other words, it is the width of a spectrum curve me ...
(full width at half the maximum):
:
Diffraction efficiency equation accounts for
as the intensity of the grating modulation,
as the diffraction efficiency for TM mode (polarization parallel to the plane of incidence), and
as the reduced effective coupling constant:
:
Wave propagation in the grating as described by scalar wave equation accounts for
as the complex amplitude in the ''y'' component and
as the propagation constant that is spatially modulated:
:
Lenslet calculations
Lenslet
(very small lenses measured in micrometers) shape variation calculations that may help determine the distance, wavelength, and middle-mask aperture that determine HOE output for HOEs acting like a lens.
Horizontal direction calculation:
is the horizontal position of the
speckle,
is the parameters of the middle mask aperture(mask placed near lens aperture) perpendicular to the horizontal position of the speckle(height),
is the wavelength, and
is the working focal distance,
:
Vertical direction calculation:
is the vertical position of the
speckle,
is the parameters of the middle mask aperture(mask placed near lens aperture) perpendicular to the vertical position of the speckle (width),
is the wavelength, and
is the working focal distance,
:
References
{{reflist, 2
External links
HOE TutorialHolographic optical element for high efficient illuminationHolographic optical method for exoplanet spectroscopy(NASA)
Holography