HOME

TheInfoList



OR:

Modern spectroscopy in the Western world started in the 17th century. New designs in optics, specifically prisms, enabled systematic observations of the
solar spectrum Sunlight is a portion of the electromagnetic radiation given off by the Sun, in particular infrared, visible, and ultraviolet light. On Earth, sunlight is scattered and filtered through Earth's atmosphere, and is obvious as daylight when th ...
. Isaac Newton first applied the word '' spectrum'' to describe the rainbow of colors that combine to form white light. During the early 1800s,
Joseph von Fraunhofer Joseph Ritter von Fraunhofer (; ; 6 March 1787 – 7 June 1826) was a German physicist and optical lens manufacturer. He made optical glass, an achromatic telescope, and objective lenses. He also invented the spectroscope and developed diffract ...
conducted experiments with dispersive
spectrometer A spectrometer () is a scientific instrument used to separate and measure spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomenon where the ...
s that enabled spectroscopy to become a more precise and quantitative scientific technique. Since then, spectroscopy has played and continues to play a significant role in
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
, physics and astronomy. Fraunhofer observed and measured dark lines in the Sun's spectrum, which now bear his name although several of them were observed earlier by Wollaston.


Origins and experimental development

The Romans were already familiar with the ability of a prism to generate a rainbow of colors. Newton is traditionally regarded as the founder of spectroscopy, but he was not the first scientist who studied and reported on the solar spectrum. The works of Athanasius Kircher (1646),
Jan Marek Marci Jan Marek Marci (german: Johannes Marcus Marci de Cronland; June 13, 1595April 10, 1667), or Johannes Marcus Marci, was a Bohemian doctor and scientist, rector of the University of Prague, and official physician to the Holy Roman Emperors. The c ...
(1648), Robert Boyle (1664), and
Francesco Maria Grimaldi Francesco Maria Grimaldi, SJ (2 April 1618 – 28 December 1663) was an Italian Jesuit priest, mathematician and physicist who taught at the Jesuit college in Bologna. He was born in Bologna to Paride Grimaldi and Anna Cattani. Work Between 1 ...
(1665), predate Newton's optics experiments (1666–1672). Newton published his experiments and theoretical explanations of dispersion of light in his '' Opticks''. His experiments demonstrated that white light could be split up into component colors by means of a prism and that these components could be recombined to generate white light. He demonstrated that the prism is not imparting or creating the colors but rather separating constituent parts of the white light. Newton's corpuscular theory of light was gradually succeeded by the
wave theory In historical linguistics, the wave model or wave theory (German ''Wellentheorie'') is a model of language change in which a new language feature (innovation) or a new combination of language features spreads from its region of origin, affecting ...
. It was not until the 19th century that the quantitative measurement of dispersed light was recognized and standardized. As with many subsequent spectroscopy experiments, Newton's sources of white light included flames and
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s, including the Sun. Subsequent studies of the nature of light include those of
Hooke Hooke may refer to: * Hooke, Dorset, England ** River Hooke, nearby watercourse * Robert Hooke (1635–1703), English natural philosopher who discovered Hooke's law * Hooke (surname), a surname * Hooke (lunar crater) * Hooke (Martian crater) * ...
,
Huygens Huygens (also Huijgens, Huigens, Huijgen/Huygen, or Huigen) is a Dutch patronymic surname, meaning "son of Hugo". Most references to "Huygens" are to the polymath Christiaan Huygens. Notable people with the surname include: * Jan Huygen (1563– ...
, Young. Subsequent experiments with prisms provided the first indications that spectra were associated uniquely with chemical constituents. Scientists observed the emission of distinct patterns of colour when salts were added to
alcohol Alcohol most commonly refers to: * Alcohol (chemistry), an organic compound in which a hydroxyl group is bound to a carbon atom * Alcohol (drug), an intoxicant found in alcoholic drinks Alcohol may also refer to: Chemicals * Ethanol, one of sev ...
flames.Brand, p. 58


Early 19th century (1800–1829)

In 1802, William Hyde Wollaston built a spectrometer, improving on Newton's model, that included a lens to focus the Sun’s spectrum on a screen. Upon use, Wollaston realized that the colors were not spread uniformly, but instead had missing patches of colors, which appeared as dark bands in the sun's spectrum. At the time, Wollaston believed these lines to be natural boundaries between the colors, but this hypothesis was later ruled out in 1815 by Fraunhofer's work.OpenStax Astronomy, "Spectroscopy in Astronomy". OpenStax CNX. Sep 29, 2016 http://cnx.org/contents/1f92a120-370a-4547-b14e-a3df3ce6f083@3
Joseph von Fraunhofer Joseph Ritter von Fraunhofer (; ; 6 March 1787 – 7 June 1826) was a German physicist and optical lens manufacturer. He made optical glass, an achromatic telescope, and objective lenses. He also invented the spectroscope and developed diffract ...
made a significant experimental leap forward by replacing a prism with a diffraction grating as the source of wavelength dispersion. Fraunhofer built off the theories of light interference developed by Thomas Young,
François Arago Dominique François Jean Arago ( ca, Domènec Francesc Joan Aragó), known simply as François Arago (; Catalan: ''Francesc Aragó'', ; 26 February 17862 October 1853), was a French mathematician, physicist, astronomer, freemason, supporter of t ...
and Augustin-Jean Fresnel. He conducted his own experiments to demonstrate the effect of passing light through a single rectangular slit, two slits, and so forth, eventually developing a means of closely spacing thousands of slits to form a diffraction grating. The interference achieved by a diffraction grating both improves the
spectral resolution The spectral resolution of a spectrograph, or, more generally, of a frequency spectrum, is a measure of its ability to resolve features in the electromagnetic spectrum. It is usually denoted by \Delta\lambda, and is closely related to the resolvi ...
over a prism and allows for the dispersed wavelengths to be quantified. Fraunhofer's establishment of a quantified wavelength scale paved the way for matching spectra observed in multiple laboratories, from multiple sources (flames and the sun) and with different instruments. Fraunhofer made and published systematic observations of the solar spectrum, and the dark bands he observed and specified the wavelengths of are still known as Fraunhofer lines.Brand, pp. 37-42 Throughout the early 1800s, a number of scientists pushed the techniques and understanding of spectroscopy forward. In the 1820s, both
John Herschel Sir John Frederick William Herschel, 1st Baronet (; 7 March 1792 – 11 May 1871) was an English polymath active as a mathematician, astronomer, chemist, inventor, experimental photographer who invented the blueprint and did botanical wor ...
and William H. F. Talbot made systematic observations of salts using
flame spectroscopy A flame (from Latin ''wikt:en:flamma#Latin, flamma'') is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction taking place in a thin zone. When flames are hot enough to have ionized gaseous components of suf ...
.Brand, p. 59


Mid-19th century (1830–1869)

In 1835, Charles Wheatstone reported that different metals could be easily distinguished by the different bright lines in the emission spectra of their
sparks Sparks may refer to: Places *Sparks, Georgia * Sparks, Kansas *Sparks, Kentucky *Sparks, Maryland * Sparks, Nebraska *Sparks, Nevada *Sparks, Oklahoma *Sparks, Texas * Sparks, Bell County, Texas * Sparks, West Virginia Books * ''Sparks'' (Raffi ...
, thereby introducing an alternative mechanism to flame spectroscopy. In 1849, J. B. L. Foucault experimentally demonstrated that
absorption Absorption may refer to: Chemistry and biology * Absorption (biology), digestion **Absorption (small intestine) *Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials *Absorption (skin), a route by which ...
and
emission Emission may refer to: Chemical products * Emission of air pollutants, notably: **Flue gas, gas exiting to the atmosphere via a flue ** Exhaust gas, flue gas generated by fuel combustion ** Emission of greenhouse gases, which absorb and emit radi ...
lines appearing at the same wavelength are both due to the same material, with the difference between the two originating from the temperature of the light source.Brand, pp. 60-62 In 1853, the
Swedish Swedish or ' may refer to: Anything from or related to Sweden, a country in Northern Europe. Or, specifically: * Swedish language, a North Germanic language spoken primarily in Sweden and Finland ** Swedish alphabet, the official alphabet used by ...
physicist Anders Jonas Ångström presented observations and theories about gas spectra in his work ''Optiska Undersökningar'' (Optical investigations) to the Royal Swedish Academy of Sciences">Stockolm Academy --> Royal Swedish Academy of Sciences. Ångström postulated that an incandescent gas emits luminous rays of the same wavelength as those it can absorb. Ångström was unaware of Foucalt's experimental results. At the same time George Stokes and William Thomson, 1st Baron Kelvin">William Thomson (Kelvin) were discussing similar postulates. Ångström also measured the emission spectrum from hydrogen later labeled the Balmer lines. In 1854 and 1855, David Alter published observations on the spectra of metals and gases, including an independent observation of the Balmer lines of hydrogen. The systematic attribution of spectra to chemical elements began in the 1860s with the work of German physicists Robert Bunsen and Gustav Kirchhoff, who found that Fraunhofer lines correspond to emission spectral lines observed in laboratory light sources. This laid way for spectrochemical analysis in laboratory and astrophysical science. Bunsen and Kirchhoff applied the optical techniques of Fraunhofer, Bunsen's improved flame source and a highly systematic experimental procedure to a detailed examination of the spectra of chemical compounds. They established the linkage between chemical elements and their unique spectral patterns. In the process, they established the technique of analytical spectroscopy. In 1860, they published their findings on the spectra of eight elements and identified these elements' presence in several natural compounds.See: * * See als
Plate II
following p. 168.
They demonstrated that spectroscopy could be used for trace chemical analysis and several of the chemical elements they discovered were previously unknown. Kirchhoff and Bunsen also definitively established the link between absorption and emission lines, including attributing solar absorption lines to particular elements based on their corresponding spectra.Brand, pp. 63-64 Kirchhoff went on to contribute fundamental research on the nature of spectral absorption and emission, including what is now known as Kirchhoff's law of thermal radiation. Kirchhoff's applications of this law to spectroscopy are captured in three laws of spectroscopy: #An incandescent solid, liquid or gas under high pressure emits a
continuous spectrum In physics, a continuous spectrum usually means a set of attainable values for some physical quantity (such as energy or wavelength) that is best described as an interval of real numbers, as opposed to a discrete spectrum, a set of attainable ...
. #A hot gas under low pressure emits a "bright-line" or emission-line spectrum. #A continuous spectrum source viewed through a cool, low-density gas produces an absorption-line spectrum. In the 1860s the husband-and-wife team of William and Margaret Huggins used spectroscopy to determine that the stars were composed of the same elements as found on earth. They also used the non-relativistic
Doppler shift The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
(
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
) equation on the spectrum of the star Sirius in 1868 to determine its axial speed. They were the first to take a spectrum of a planetary nebula when the Cat's Eye Nebula (NGC 6543) was analyzed. Using spectral techniques, they were able to distinguish
nebula A nebula ('cloud' or 'fog' in Latin; pl. nebulae, nebulæ or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regio ...
e from stars.
August Beer August Beer (; 31 July 1825 – 18 November 1863) was a German physicist, chemist, and mathematician of Jewish descent. Biography Beer was born in Trier, where he studied mathematics and natural sciences. Beer was educated at the technical s ...
observed a relationship between light absorption and concentration and created the color comparator which was later replaced by a more accurate device called the spectrophotometer.


Late 19th century (1870–1899)

In the 19th century new developments such as the discovery of photography, Rowland's invention of the concave diffraction grating, and Schumann's works on discovery of vacuum ultraviolet (fluorite for prisms and lenses, low-gelatin
photographic plate Photographic plates preceded photographic film as a capture medium in photography, and were still used in some communities up until the late 20th century. The light-sensitive emulsion of silver salts was coated on a glass plate, typically thinn ...
s and absorption of UV in air below 185 nm) made advance to shorter wavelengths very fast. At the same time Dewar observed series in alkali spectra,
Hartley Hartley may refer to: Places Australia *Hartley, New South Wales *Hartley, South Australia **Electoral district of Hartley, a state electoral district Canada *Hartley Bay, British Columbia United Kingdom *Hartley, Cumbria *Hartley, Plymou ...
found constant wave-number differences, Balmer discovered a relation connecting wavelengths in the visible hydrogen spectrum, and finally Rydberg derived a formula for wave-numbers of spectral series. Meanwhile, the substantial summary of past experiments performed by Maxwell (1873), resulted in his equations of electromagnetic waves. In 1895, the German physicist Wilhelm Conrad Röntgen discovered and extensively studied X-rays, which were later used in X-ray spectroscopy. One year later, in 1896, French physicist Antoine Henri Becquerel discovered radioactivity, and Dutch physicist
Pieter Zeeman Pieter Zeeman (; 25 May 1865 – 9 October 1943) was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Hendrik Lorentz for his discovery of the Zeeman effect. Childhood and youth Pieter Zeeman was born in Zonnemaire, a small town ...
observed spectral lines being split by a magnetic field. In 1897, theoretical physicist, Joseph Larmor explained the splitting of the spectral lines in a
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
by the oscillation of electrons. Physicist, Joseph Larmor, created the first solar system model of the atom in 1897. He also postulated the proton, calling it a “positive electron.” He said the destruction of this type of atom making up matter “is an occurrence of infinitely small probability.”


Early 20th century (1900–1950)

The first decade of the 20th century brought the basics of quantum theory ( Planck,
Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
) and interpretation of spectral series of hydrogen by
Lyman Lyman may refer to: Places Ukraine * Lyman, Ukraine United States * Lyman, Iowa * Lyman, Maine * Lyman, Mississippi * Lyman, Nebraska * Lyman, New Hampshire * Lyman, Oklahoma * Lyman, South Carolina * Lyman, South Dakota * Lyman County, South Dak ...
in VUV and by Paschen in infrared.
Ritz Ritz or The Ritz may refer to: Facilities and structures Hotels * The Ritz Hotel, London, a hotel in London, England * Hôtel Ritz Paris, a hotel in Paris, France * Hotel Ritz (Madrid), a hotel in Madrid, Spain * Hotel Ritz (Lisbon), a hotel in ...
formulated the combination principle. John William Nicholson had created an atomic model in 1912, a year before Niels Bohr, that was both nuclear and quantum in which he showed that electron oscillations in his atom matched the solar and nebular spectral lines.John Heilbron, “The path to the quantum atom,” 6 June 2013, Vol 498, NATURE, 29. Bohr had been working on his atom during this period, but Bohr’s model had only a single ground state and no spectra until he incorporated the Nicholson model and referenced the Nicholson papers in his model of the atom. In 1913
Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922. B ...
formulated his quantum mechanical model of atom. This stimulated empirical term analysis. Bohr published a theory of the hydrogen-like atoms that could explain the observed wavelengths of spectral lines due to electrons transitioning from different energy states. In 1937 "E. Lehrer created the first fully-automated spectrometer" to help more accurately measure spectral lines. With the development of more advanced instruments such as photo-detectors scientists were then able to more accurately measure specific wavelength absorption of substances.


Development of quantum mechanics

Between 1920 and 1930 fundamental concepts of quantum mechanics were developed by
Pauli Pauli is a surname and also a Finnish male given name (variant of Paul) and may refer to: * Arthur Pauli (born 1989), Austrian ski jumper * Barbara Pauli (1752 or 1753 - fl. 1781), Swedish fashion trader *Gabriele Pauli (born 1957), German politi ...
,
Heisenberg Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent series ...
, Schrödinger, and Dirac. Understanding of the
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
and exclusion principle allowed conceiving how
electron shells In chemistry and atomic physics, an electron shell may be thought of as an orbit followed by electrons around an atom's nucleus. The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or ...
of atoms are filled with the increasing atomic number.


Multiply ionized atoms

This branch of
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
deals with radiation related to atoms that are stripped of several electrons (multiply ionized atoms (MIA), multiply charged ions, highly charged ions). These are observed in very hot plasmas (laboratory or astrophysical) or in accelerator experiments ( beam-foil,
electron beam ion trap Electron beam ion trap (EBIT) is an electromagnetic bottle that produces and confines highly charged ions. An EBIT uses an electron beam focused with a powerful magnetic field to ionize atoms to high charge states by successive electron impact. ...
(EBIT)). The lowest exited electron shells of such ions decay into stable ground states producing photons in VUV, EUV and soft X-ray spectral regions (so-called resonance transitions).


Structure studies

Further progress in studies of atomic structure was in tight connection with the advance to shorter wavelength in EUV region. Millikan,
Sawyer *A sawyer (occupation) is someone who saws wood. *Sawyer, a fallen tree stuck on the bottom of a river, where it constitutes a danger to boating. Places in the United States Communities *Sawyer, Kansas *Sawyer, Kentucky * Sawyer, Michigan * Saw ...
,
Bowen Bowen may refer to: Places Australia * Bowen, Queensland, a town * Bowen Hills, Queensland, a suburb ** Bowen Hills railway station, a railway station in Bowen Hills ** Bowen Park, Brisbane, a park in Bowen Hills * Bowen Bridge, crossing the Derw ...
used electric discharges in vacuum to observe some emission spectral lines down to 13 nm they prescribed to stripped atoms. In 1927 Osgood and Hoag reported on
grazing incidence The angle of incidence, in geometric optics, is the angle between a ray incident on a surface and the line perpendicular (at 90 degree angle) to the surface at the point of incidence, called the normal. The ray can be formed by any waves, such as o ...
concave grating spectrographs and photographed lines down to 4.4 nm (Kα of carbon). Dauvillier used a fatty acid crystal of large crystal grating space to extend soft x-ray spectra up to 12.1 nm, and the gap was closed. In the same period Manne Siegbahn constructed a very sophisticated grazing incidence spectrograph that enabled Ericson and Edlén to obtain spectra of vacuum spark with high quality and to reliably identify lines of multiply ionized atoms up to O VI, with five stripped electrons. Grotrian developed his graphic presentation of energy structure of the atoms. Russel and Saunders proposed their coupling scheme for the spin-orbit interaction and their generally recognized notation for spectral terms.


Accuracy

Theoretical quantum-mechanical calculations become rather accurate to describe the energy structure of some simple electronic configurations. The results of theoretical developments were summarized by Condon and Shortley in 1935. Edlén thoroughly analyzed spectra of MIA for many chemical elements and derived regularities in energy structures of MIA for many isoelectronic sequences (ions with the same number of electrons, but different nuclear charges). Spectra of rather high ionization stages (e.g. Cu XIX) were observed. The most exciting event was in 1942, when Edlén proved the identification of some solar coronal lines on the basis of his precise analyses of spectra of MIA. This implied that the solar corona has a temperature of a million degrees, and strongly advanced understanding of solar and stellar physics. After the
WW II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposing ...
experiments on balloons and rockets were started to observe the VUV radiation of the Sun. (See X-ray astronomy). More intense research continued since 1960 including
spectrometer A spectrometer () is a scientific instrument used to separate and measure spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomenon where the ...
s on satellites. In the same period the laboratory spectroscopy of MIA becomes relevant as a diagnostic tool for hot plasmas of thermonuclear devices (see Nuclear fusion) which begun with building Stellarator in 1951 by Spitzer, and continued with tokamaks, z-pinches and the laser produced plasmas. Progress in ion accelerators stimulated beam-foil spectroscopy as a means to measure lifetimes of exited states of MIA. Many various data on highly exited energy levels,
autoionization Autoionization is a process by which an atom or a molecule in an excited state spontaneously emits one of the outer-shell electrons, thus going from a state with charge  to a state with charge , for example from an electrically neutral st ...
and inner-core ionization states were obtained. 


Electron beam ion trap

Simultaneously theoretical and computational approaches provided data necessary for identification of new spectra and interpretation of observed line intensities. New laboratory and theoretical data become very useful for spectral observation in space. It was a real upheaval of works on MIA in USA, England, France, Italy, Israel, Sweden, Russia and other countries A new page in the spectroscopy of MIA may be dated as 1986 with development of
EBIT EBIT, Ebit or ebit may refer to: *EBIT, or Earnings before interest and taxes, in finance *EBIT, or Electron beam ion trap, in physics *An ebit (quantum state), a two-party quantum state with quantum entanglement Quantum entanglement is the ph ...
(Levine and Marrs,
LLNL Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
) due to a favorable composition of modern high technologies such as cryogenics, ultra-high vacuum,
superconducting magnet A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct mu ...
s, powerful electron beams and semiconductor detectors. Very quickly EBIT sources were created in many countries (see
NIST The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical sci ...
summary for many details as well as reviews.) A wide field of spectroscopic research with EBIT is enabled including achievement of highest grades of ionization (U92+), wavelength measurement,
hyperfine structure In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucl ...
of energy levels, quantum electrodynamic studies, ionization cross-sections (CS) measurements, electron-impact excitation CS, X-ray
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
, relative line intensities, dielectronic recombination CS, magnetic octupole decay, lifetimes of forbidden transitions, charge-exchange recombination, etc.


Infrared and Raman spectroscopy

Many early scientists who studied the IR spectra of compounds had to develop and build their own instruments to be able to record their measurements making it very difficult to get accurate measurements. During World War II, the U.S. government contracted different companies to develop a method for the polymerization of butadiene to create rubber, but this could only be done through analysis of C4 hydrocarbon isomers. These contracted companies started developing optical instruments and eventually created the first infrared spectrometers. With the development of these commercial spectrometers Infrared Spectroscopy became a more popular method to determine the "fingerprint" for any molecule. Raman spectroscopy was first observed in 1928 by Sir Chandrasekhara Venkata Raman in liquid substances and also by "Grigory Landsberg and Leonid Mandelstam in crystals". Raman spectroscopy is based on the observation of the raman effect which is defined as "The intensity of the scattered light is dependent on the amount of the polarization potential change". The raman spectrum records light intensity vs. light frequency (wavenumber) and the wavenumber shift is characteristic to each individual compound.


Laser spectroscopy

Laser spectroscopy is a spectroscopic technique that uses lasers to be able determine the emitted frequencies of matter. The laser was invented because spectroscopists took the concept of its predecessor, the maser, and applied it to the visible and infrared ranges of light. The maser was invented by
Charles Townes Charles Hard Townes (July 28, 1915 – January 27, 2015) was an American physicist. Townes worked on the theory and application of the maser, for which he obtained the fundamental patent, and other work in quantum electronics associated wi ...
and other spectroscopists to stimulate matter to determine the radiative frequencies that specific atoms and molecules emitted. While working on the maser, Townes realized that more accurate detections were possible as the frequency of the microwave emitted increased. This led to an idea a few years later to use the visible and eventually the infrared ranges of light for spectroscopy that became a reality with the help of
Arthur Schawlow Arthur Leonard Schawlow (May 5, 1921 – April 28, 1999) was an American physicist and co-inventor of the laser with Charles Townes. His central insight, which Townes overlooked, was the use of two mirrors as the resonant cavity to take maser act ...
. Since then, lasers have gone on to significantly advance experimental spectroscopy. The laser light allowed for much higher precision experiments specifically in the uses of studying collisional effects of light as well as being able to accurately detect specific wavelengths and frequencies of light, allowing for the invention of devices such as laser atomic clocks. Lasers also made spectroscopy that used time methods more accurate by using speeds or decay times of photons at specific wavelengths and frequencies to keep time. Laser spectroscopic techniques have been used for many different applications. One example is using laser spectroscopy to detect compounds in materials. One specific method is called Laser-induced Fluorescence Spectroscopy, and uses spectroscopic methods to be able to detect what materials are in a solid, liquid, or gas, '' in situ''. This allows for direct testing of materials, instead of having to take the material to a lab to figure out what the solid, liquid, or gas is made of.


See also

* List of spectroscopists *
Mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is use ...
* History of quantum mechanics


References


External links


MIT Spectroscopy Lab's History of SpectroscopySpectroscopy Magazine's "A Timeline of Atomic Spectroscopy"
{{History of physics Spectroscopy Quantum mechanics History of chemistry History of physics Plasma physics Ionizing radiation