HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Hilbert cube, named after
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many a ...
, is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
that provides an instructive example of some ideas in
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube (see below).


Definition

The Hilbert cube is best defined as the
topological product In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seem ...
of the
intervals Interval may refer to: Mathematics and physics * Interval (mathematics), a range of numbers ** Partially ordered set#Intervals, its generalization from numbers to arbitrary partially ordered sets * A statistical level of measurement * Interval e ...
, 1/''n''for ''n'' = 1, 2, 3, 4, ... That is, it is a
cuboid In geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube", in the sense that by adjusting the length of the edges or the angles between edges and faces a cuboid can be transformed into a cub ...
of
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
, where the lengths of the edges in each orthogonal direction form the sequence \lbrace 1/n \rbrace_. The Hilbert cube is
homeomorphic In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphi ...
to the product of
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
ly many copies of the
unit interval In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysis, ...
, 1 In other words, it is topologically indistinguishable from the
unit cube A unit cube, more formally a cube of side 1, is a cube whose sides are 1 unit long.. See in particulap. 671. The volume of a 3-dimensional unit cube is 1 cubic unit, and its total surface area is 6 square units.. Unit hypercube The term '' ...
of countably infinite dimension. Some authors use the term "Hilbert cube" to mean this Cartesian product instead of the product of the ,\frac/math>. If a point in the Hilbert cube is specified by a sequence \lbrace a_n \rbrace with 0 \leq a_n \leq 1/n, then a homeomorphism to the infinite dimensional unit cube is given by h(a)_n = n\cdot a_n.


The Hilbert cube as a metric space

It is sometimes convenient to think of the Hilbert cube as a
metric space In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
, indeed as a specific subset of a separable
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
(i.e. a Hilbert space with a countably infinite Hilbert basis). For these purposes, it is best not to think of it as a product of copies of ,1 but instead as : ,1× ,1/2 × ,1/3 × ···; as stated above, for topological properties, this makes no difference. That is, an element of the Hilbert cube is an
infinite sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called t ...
:(''x''''n'') that satisfies :0 ≤ ''x''''n'' ≤ 1/''n''. Any such sequence belongs to the Hilbert space 2, so the Hilbert cube inherits a metric from there. One can show that the topology induced by the metric is the same as the
product topology In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seemin ...
in the above definition.


Properties

As a product of
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many ...
s, the Hilbert cube is itself a compact Hausdorff space as a result of the
Tychonoff theorem In mathematics, Tychonoff's theorem states that the product of any collection of compact topological spaces is compact with respect to the product topology. The theorem is named after Andrey Nikolayevich Tikhonov (whose surname sometimes is tran ...
. The compactness of the Hilbert cube can also be proved without the Axiom of Choice by constructing a continuous function from the usual
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Thr ...
onto the Hilbert cube. In ℓ2, no point has a compact
neighbourhood A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural are ...
(thus, ℓ2 is not
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
). One might expect that all of the compact subsets of ℓ2 are finite-dimensional. The Hilbert cube shows that this is not the case. But the Hilbert cube fails to be a neighbourhood of any point ''p'' because its side becomes smaller and smaller in each dimension, so that an
open ball In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them). These concepts are defin ...
around ''p'' of any fixed radius ''e'' > 0 must go outside the cube in some dimension. Any infinite-dimensional convex compact subset of l_2 is homeomorphic to the Hilbert cube. The Hilbert cube is a convex set, whose span is the whole space, but whose interior is empty. This situation is impossible in finite dimensions. The tangent cone to the cube at the zero vector is the whole space. Every subset of the Hilbert cube inherits from the Hilbert cube the properties of being both metrizable (and therefore T4) and
second countable In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mat ...
. It is more interesting that the converse also holds: Every
second countable In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mat ...
T4 space is homeomorphic to a subset of the Hilbert cube. Every Gδ-subset of the Hilbert cube is a
Polish space In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named bec ...
, a topological space homeomorphic to a separable and complete metric space. Conversely, every Polish space is homeomorphic to a Gδ-subset of the Hilbert cube.


Notes


References

* * *


Further reading

* {{Cite book , last1=Steen , first1=Lynn Arthur , author1-link=Lynn Arthur Steen , last2=Seebach , first2=J. Arthur Jr. , author2-link=J. Arthur Seebach, Jr. , title=
Counterexamples in Topology ''Counterexamples in Topology'' (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr. In the process of working on problems like the metrization problem, topologists (including Steen and Seebach) h ...
, orig-year=1978 , publisher=
Springer-Verlag Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in ...
, location=Berlin, New York , edition=
Dover Dover () is a town and major ferry port in Kent, South East England. It faces France across the Strait of Dover, the narrowest part of the English Channel at from Cap Gris Nez in France. It lies south-east of Canterbury and east of Maidstone ...
reprint of 1978 , isbn=978-0-486-68735-3 , mr=507446 , year=1995 Topological spaces Polytopes Infinity
Cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only r ...