HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, Hilbert's second problem was posed by
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
in 1900 as one of his 23 problems. It asks for a proof that arithmetic is
consistent In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences ...
– free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in , which include a second order completeness axiom. In the 1930s,
Kurt Gödel Kurt Friedrich Gödel ( ; ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel profoundly ...
and
Gerhard Gentzen Gerhard Karl Erich Gentzen (24 November 1909 – 4 August 1945) was a German mathematician and logician. He made major contributions to the foundations of mathematics, proof theory, especially on natural deduction and sequent calculus. He died ...
proved results that cast new light on the problem. Some feel that Gödel's theorems give a negative solution to the problem, while others consider Gentzen's proof as a partial positive solution.


Hilbert's problem and its interpretation

In one English translation, Hilbert asks:
"When we are engaged in investigating the foundations of a science, we must set up a system of axioms which contains an exact and complete description of the relations subsisting between the elementary ideas of that science. ... But above all I wish to designate the following as the most important among the numerous questions which can be asked with regard to the axioms: To prove that they are not contradictory, that is, that a definite number of logical steps based upon them can never lead to contradictory results. In geometry, the proof of the compatibility of the axioms can be effected by constructing a suitable field of numbers, such that analogous relations between the numbers of this field correspond to the geometrical axioms. ... On the other hand a direct method is needed for the proof of the compatibility of the arithmetical axioms."
Hilbert's statement is sometimes misunderstood, because by the "arithmetical axioms" he did not mean a system equivalent to Peano arithmetic, but a stronger system with a second-order completeness axiom. The system Hilbert asked for a completeness proof of is more like
second-order arithmetic In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation of mathematics, foundation for much, but not all, ...
than first-order Peano arithmetic. As a nowadays common interpretation, a positive solution to Hilbert's second question would in particular provide a proof that
Peano arithmetic In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
is consistent. There are many known proofs that Peano arithmetic is consistent that can be carried out in strong systems such as
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
. These do not provide a resolution to Hilbert's second question, however, because someone who doubts the consistency of Peano arithmetic is unlikely to accept the axioms of set theory (which are much stronger) to prove its consistency. Thus a satisfactory answer to Hilbert's problem must be carried out using principles that would be acceptable to someone who does not already believe PA is consistent. Such principles are often called finitistic because they are completely constructive and do not presuppose a completed infinity of natural numbers. Gödel's second incompleteness theorem (see
Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the phi ...
) places a severe limit on how weak a finitistic system can be while still proving the consistency of Peano arithmetic.


Gödel's incompleteness theorem

Gödel's second incompleteness theorem shows that it is not possible for any proof that Peano Arithmetic is consistent to be carried out within Peano arithmetic itself. This theorem shows that if the only acceptable proof procedures are those that can be formalized within arithmetic then Hilbert's call for a consistency proof cannot be answered. However, as explain, there is still room for a proof that cannot be formalized in arithmetic: :"This imposing result of Godel's analysis should not be misunderstood: it does not exclude a meta-mathematical proof of the consistency of arithmetic. What it excludes is a proof of consistency that can be mirrored by the formal deductions of arithmetic. Meta-mathematical proofs of the consistency of arithmetic have, in fact, been constructed, notably by
Gerhard Gentzen Gerhard Karl Erich Gentzen (24 November 1909 – 4 August 1945) was a German mathematician and logician. He made major contributions to the foundations of mathematics, proof theory, especially on natural deduction and sequent calculus. He died ...
, a member of the Hilbert school, in 1936, and by others since then. ... But these meta-mathematical proofs cannot be represented within the arithmetical calculus; and, since they are not finitistic, they do not achieve the proclaimed objectives of Hilbert's original program. ... The possibility of constructing a finitistic absolute proof of consistency for arithmetic is not excluded by Gödel’s results. Gödel showed that no such proof is possible that can be represented within arithmetic. His argument does not eliminate the possibility of strictly finitistic proofs that cannot be represented within arithmetic. But no one today appears to have a clear idea of what a finitistic proof would be like that is not capable of formulation within arithmetic."


Gentzen's consistency proof

In 1936, Gentzen published a proof that Peano Arithmetic is consistent. Gentzen's result shows that a consistency proof can be obtained in a system that is much weaker than set theory. Gentzen's proof proceeds by assigning to each proof in Peano arithmetic an
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
, based on the structure of the proof, with each of these ordinals less than ε0. He then proves by
transfinite induction Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for a ...
on these ordinals that no proof can conclude in a contradiction. The method used in this proof can also be used to prove a cut elimination result for
Peano arithmetic In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
in a stronger logic than first-order logic, but the consistency proof itself can be carried out in ordinary first-order logic using the axioms of
primitive recursive arithmetic Primitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician , as a formalization of his finitistic conception of the foundations of arithmetic, and it is widel ...
and a transfinite induction principle. gives a game-theoretic interpretation of Gentzen's method. Gentzen's consistency proof initiated the program of
ordinal analysis In proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory ha ...
in proof theory. In this program, formal theories of arithmetic or set theory are assigned
ordinal numbers In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
that measure the consistency strength of the theories. A theory will be unable to prove the consistency of another theory with a higher proof theoretic ordinal.


Modern viewpoints on the status of the problem

While the theorems of Gödel and Gentzen are now well understood by the mathematical logic community, no consensus has formed on whether (or in what way) these theorems answer Hilbert's second problem. argues that Gödel's incompleteness theorem shows that it is not possible to produce finitistic consistency proofs of strong theories. states that although Gödel's results imply that no finitistic syntactic consistency proof can be obtained, semantic (in particular,
second-order Second-order may refer to: Mathematics * Second order approximation, an approximation that includes quadratic terms * Second-order arithmetic, an axiomatization allowing quantification of sets of numbers * Second-order differential equation, a d ...
) arguments can be used to give convincing consistency proofs. argues that Gödel's theorem does not prevent a consistency proof because its hypotheses might not apply to all the systems in which a consistency proof could be carried out. calls the belief that Gödel's theorem eliminates the possibility of a persuasive consistency proof "erroneous", citing the consistency proof given by Gentzen and a later one given by Gödel in 1958.


See also

* Takeuti conjecture


Notes


References

* * * * * * * * * * * * * * .


External links


Original text of Hilbert's talk, in German


{{Authority control Hilbert's problems">#02