HOME

TheInfoList



OR:

A hexomino (or 6-omino) is a
polyomino A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in pop ...
of order 6, that is, a
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two to ...
in the
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
made of 6 equal-sized
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
s connected edge-to-edge. The name of this type of figure is formed with the prefix hex(a)-. When rotations and
reflection Reflection or reflexion may refer to: Science and technology * Reflection (physics), a common wave phenomenon ** Specular reflection, reflection from a smooth surface *** Mirror image, a reflection in a mirror or in water ** Signal reflection, in ...
s are not considered to be distinct shapes, there are 35 different ''free'' hexominoes. When reflections are considered distinct, there are 60 ''one-sided'' hexominoes. When rotations are also considered distinct, there are 216 ''fixed'' hexominoes.


Symmetry

The figure above shows all 35 possible free hexominoes, coloured according to their symmetry groups: * The twenty grey hexominoes have no symmetry. Their symmetry group consists only of the
identity mapping Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
. * The six red hexominoes have an axis of
mirror symmetry In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D ther ...
parallel to the gridlines. Their symmetry group has two elements, the identity and a reflection in a line parallel to the sides of the squares. * The two green hexominoes have an axis of mirror symmetry at 45° to the gridlines. Their symmetry group has two elements, the identity and a diagonal reflection. * The five blue hexominoes have point symmetry, also known as
rotational symmetry Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which i ...
of order 2. Their symmetry group has two elements, the identity and the 180° rotation. * The two purple hexominoes have two axes of mirror symmetry, both parallel to the gridlines (thus one horizontal axis and one vertical axis). Their symmetry group has four elements. It is the
dihedral group In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, ...
of order 2, also known as the
Klein four-group In mathematics, the Klein four-group is a group with four elements, in which each element is self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identity elements produces the third one. ...
. If reflections of a hexomino are considered distinct, as they are with one-sided hexominoes, then the first and fourth categories above would each double in size, resulting in an extra 25 hexominoes for a total of 60. If rotations are also considered distinct, then the hexominoes from the first category count eightfold, the ones from the next three categories count fourfold, and the ones from the last category count twice. This results in 20 × 8 + (6 + 2 + 5) × 4 + 2 × 2 = 216 fixed hexominoes.


Packing and tiling

Each of the 35 hexominoes satisfies the
Conway criterion In the mathematical theory of tessellations, the Conway criterion, named for the English mathematician John Horton Conway, is a sufficient rule for when a prototile will tile the plane. It consists of the following requirements:Will It Tile? Try ...
; hence every hexomino is capable of tiling the plane. Although a complete set of 35 hexominoes has a total of 210 squares, it is not possible to pack them into a rectangle. (Such an arrangement is possible with the 12
pentomino Derived from the Greek word for ' 5', and " domino", a pentomino (or 5-omino) is a polyomino of order 5, that is, a polygon in the plane made of 5 equal-sized squares connected edge-to-edge. When rotations and reflections are not considered ...
es which can be packed into any of the rectangles 3 × 20, 4 × 15, 5 × 12 and 6 × 10.) A simple way to demonstrate that such a packing of hexominoes is not possible is via a parity argument. If the hexominoes are placed on a checkerboard pattern, then 11 of the hexominoes will cover an even number of black squares (either 2 white and 4 black or vice versa) and the other 24 hexominoes will cover an odd number of black squares (3 white and 3 black). Overall, an even number of black squares will be covered in any arrangement. However, any rectangle of 210 squares will have 105 black squares and 105 white squares, and therefore cannot be covered by the 35 hexominoes. However, there are other simple figures of 210 squares that can be packed with the hexominoes. For example, a 15 × 15 square with a 3 × 5 rectangle removed from the centre has 210 squares. With checkerboard colouring, it has 106 white and 104 black squares (or vice versa), so parity does not prevent a packing, and a packing is indeed possible. It is also possible for two sets of pieces to fit a rectangle of size 420, or for the set of 60 one-sided hexominoes (18 of which cover an even number of black squares) to fit a rectangle of size 360.Hexomino Constructions
/ref>


Polyhedral nets for the cube

A
polyhedral net In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded (along edges) to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and sol ...
for the cube is necessarily a hexomino, with 11 hexominoes (shown at right) actually being nets. They appear on the right, again coloured according to their symmetry groups. A polyhedral net for the cube cannot contain the O-tetromino, nor the I-pentomino, the U-pentomino, or the V-pentomino.


References


External links


Page by Jürgen Köller on hexominoes, including symmetry, packing and other aspects


of
David Eppstein David Arthur Eppstein (born 1963) is an American computer scientist and mathematician. He is a Distinguished Professor of computer science at the University of California, Irvine. He is known for his work in computational geometry, graph algo ...
'
''Geometry Junkyard''




, Steven Dutch. {{Polyforms Polyforms