Herbig–Haro (HH) objects are bright patches of
nebulosity associated with newborn
star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s. They are formed when narrow jets of partially
ionised gas ejected by stars collide with nearby clouds of gas and dust at several hundred kilometers per second. Herbig–Haro objects are commonly found in
star-forming regions, and several are often seen around a single star, aligned with its
rotational axis. Most of them lie within about one
parsec
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (AU), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, and ...
(3.26
light-year
A light-year, alternatively spelled light year (ly or lyr), is a unit of length used to express astronomical distances and is equal to exactly , which is approximately 9.46 trillion km or 5.88 trillion mi. As defined by the International Astr ...
s) of the source, although some have been observed several parsecs away. HH objects are transient phenomena that last around a few tens of thousands of years. They can change visibly over timescales of a few years as they move rapidly away from their parent star into the gas clouds of interstellar space (the
interstellar medium
The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
or ISM).
Hubble Space Telescope
The Hubble Space Telescope (HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the Orbiting Solar Observatory, first space telescope, but it is one of the largest and most ...
observations have revealed the complex evolution of HH objects over the period of a few years, as parts of the nebula fade while others brighten as they collide with the clumpy material of the interstellar medium.
First observed in the late 19th century by
Sherburne Wesley Burnham, Herbig–Haro objects were recognised as a distinct type of
emission nebula
An emission nebula is a nebula formed of ionized gases that emit light of various wavelengths. The most common source of ionization is high-energy ultraviolet photons emitted from a nearby hot star. Among the several different types of emission n ...
in the 1940s. The first astronomers to study them in detail were
George Herbig and
Guillermo Haro, after whom they have been named. Herbig and Haro were working independently on studies of
star formation
Star formation is the process by which dense regions within molecular clouds in interstellar space—sometimes referred to as "stellar nurseries" or "star-forming regions"—Jeans instability, collapse and form stars. As a branch of astronomy, sta ...
when they first analysed the objects, and recognised that they were a by-product of the star formation process. Although HH objects are visible-
wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
phenomena, many remain invisible at these wavelengths due to dust and gas, and can only be detected at
infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
wavelengths. Such objects, when observed in near-infrared, are called molecular hydrogen
emission-line objects (MHOs).
Discovery and history of observations
The first HH object was observed in the late 19th century by Sherburne Wesley Burnham, when he observed the star
T Tauri with the
refracting telescope
A refracting telescope (also called a refractor) is a type of optical telescope that uses a lens (optics), lens as its objective (optics), objective to form an image (also referred to a dioptrics, dioptric telescope). The refracting telescope d ...
at
Lick Observatory
The Lick Observatory is an astronomical observatory owned and operated by the University of California. It is on the summit of Mount Hamilton (California), Mount Hamilton, in the Diablo Range just east of San Jose, California, United States. The ...
and noted a small patch of nebulosity nearby.
[ It was thought to be an ]emission nebula
An emission nebula is a nebula formed of ionized gases that emit light of various wavelengths. The most common source of ionization is high-energy ultraviolet photons emitted from a nearby hot star. Among the several different types of emission n ...
, later becoming known as Burnham's Nebula, and was not recognized as a distinct class of object. T Tauri was found to be a very young and variable star, and is the prototype of the class of similar objects known as T Tauri star
T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus Molecular Cloud, Taurus star-forming region. They are found near mo ...
s which have yet to reach a state of hydrostatic equilibrium
In fluid mechanics, hydrostatic equilibrium, also called hydrostatic balance and hydrostasy, is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. I ...
between gravitational collapse
Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formati ...
and energy generation through nuclear fusion
Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
at their centres. Fifty years after Burnham's discovery, several similar nebulae were discovered with almost star-like appearance. Both George Herbig and Guillermo Haro made independent observations of several of these objects in the Orion Nebula
The Orion Nebula (also known as Messier 42, M42, or NGC 1976) is a diffuse nebula in the Milky Way situated south of Orion's Belt in the Orion (constellation), constellation of Orion, and is known as the middle "star" in the "sword" of Orion. It ...
during the 1940s. Herbig also looked at Burnham's Nebula and found it displayed an unusual electromagnetic spectrum
The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
, with prominent emission line
A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used ...
s of hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
, sulfur
Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
and oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
. Haro found that all the objects of this type were invisible in infrared light.
Following their independent discoveries, Herbig and Haro met at an astronomy conference
A conference is a meeting, often lasting a few days, which is organized on a particular subject, or to bring together people who have a common interest. Conferences can be used as a form of group decision-making, although discussion, not always d ...
in Tucson, Arizona
Tucson (; ; ) is a city in Pima County, Arizona, United States, and its county seat. It is the second-most populous city in Arizona, behind Phoenix, Arizona, Phoenix, with a population of 542,630 in the 2020 United States census. The Tucson ...
in December 1949. Herbig had initially paid little attention to the objects he had discovered, being primarily concerned with the nearby stars, but on hearing Haro's findings he carried out more detailed studies of them. The Soviet
The Union of Soviet Socialist Republics. (USSR), commonly known as the Soviet Union, was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 until Dissolution of the Soviet ...
astronomer Viktor Ambartsumian
Viktor Amazaspovich Ambartsumian (; , ''Viktor Hamazaspi Hambardzumyan''; 12 August 1996) was a Soviet and Armenian astrophysicist and science administrator. One of the 20th century's leading astronomers, he is widely regarded as the founder of ...
gave the objects their name (Herbig–Haro objects, normally shortened to HH objects), and based on their occurrence near young stars (a few hundred thousand years old), suggested they might represent an early stage in the formation of T Tauri stars. Studies of the HH objects showed they were highly ionised
Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is ...
, and early theorists speculated that they were reflection nebulae containing low-luminosity hot stars deep inside. But the absence of infrared radiation from the nebulae meant there could not be stars within them, as these would have emitted abundant infrared light. In 1975 American astronomer R. D. Schwartz theorized that winds
Wind is the natural movement of atmosphere of Earth, air or other gases relative to a planetary surface, planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heatin ...
from T Tauri stars produce shocks in the ambient medium on encounter, resulting in generation of visible light. With the discovery of the first proto-stellar jet in HH 46/47, it became clear that HH objects are indeed shock-induced phenomena with shocks being driven by a collimated
A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A laser beam is an archetypical example. A perfectly collimated light beam, with no divergence, would not disp ...
jet from protostars.[
]
Formation
Stars form by gravitational collapse of interstellar gas clouds. As the collapse increases the density, radiative energy loss decreases due to increased opacity. This raises the temperature of the cloud which prevents further collapse, and a hydrostatic equilibrium is established. Gas continues to fall towards the core in a rotating disk. The core of this system is called a protostar
A protostar is a very young star that is still gathering mass from its parent molecular cloud. It is the earliest phase in the process of stellar evolution. For a low-mass star (i.e. that of the Sun or lower), it lasts about 500,000 years. The p ...
. Some of the accreting material is ejected out along the star's axis of rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
in two jets of partially ionised gas ( plasma).[ The mechanism for producing these collimated bipolar jets is not entirely understood, but it is believed that interaction between the accretion disk and the ]stellar magnetic field
A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized mag ...
accelerates some of the accreting material from within a few astronomical unit
The astronomical unit (symbol: au or AU) is a unit of length defined to be exactly equal to . Historically, the astronomical unit was conceived as the average Earth-Sun distance (the average of Earth's aphelion and perihelion), before its m ...
s of the star away from the disk plane. At these distances the outflow is divergent, fanning out at an angle in the range of 10−30°, but it becomes increasingly collimated at distances of tens to hundreds of astronomical units from the source, as its expansion is constrained.[ The jets also carry away the excess ]angular momentum
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
resulting from accretion of material onto the star, which would otherwise cause the star to rotate too rapidly and disintegrate.[ When these jets collide with the interstellar medium, they give rise to the small patches of bright emission which comprise HH objects.]
Properties
Electromagnetic emission from HH objects is caused when their associated shock wave
In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a me ...
s collide with the interstellar medium
The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
, creating what is called the "terminal working surfaces". The spectrum is continuous, but also has intense emission lines of neutral and ionized species.[ Spectroscopic observations of HH objects' ]doppler shift
The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described t ...
s indicate velocities of several hundred kilometers per second, but the emission lines in those spectra are weaker than what would be expected from such high-speed collisions. This suggests that some of the material they are colliding with is also moving along the beam, although at a lower speed. Spectroscopic observations of HH objects show they are moving away from the source stars at speeds of several hundred kilometres per second. In recent years, the high optical resolution
Optical resolution describes the ability of an imaging system to resolve detail, in the object that is being imaged.
An imaging system may have many individual components, including one or more lenses, and/or recording and display components. E ...
of the Hubble Space Telescope has revealed the proper motion
Proper motion is the astrometric measure of changes in the apparent places of stars or other celestial objects as they move relative to the center of mass of the Solar System. It is measured relative to the distant stars or a stable referenc ...
(movement along the sky plane) of many HH objects in observations spaced several years apart. As they move away from the parent star, HH objects evolve significantly, varying in brightness on timescales of a few years. Individual compact knots or clumps within an object may brighten and fade or disappear entirely, while new knots have been seen to appear. These arise likely because of the precession
Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In o ...
of their jets,[ along with the pulsating and intermittent eruptions from their parent stars.] Faster jets catch up with earlier slower jets, creating the so-called "internal working surfaces", where streams of gas collide and generate shock waves and consequent emissions.
The total mass being ejected by stars to form typical HH objects is estimated to be of the order of 10−8 to 10−6 per year, a very small amount of material compared to the mass of the stars themselves but amounting to about 1–10% of the total mass accreted by the source stars in a year. Mass loss tends to decrease with increasing age of the source.[ The temperatures observed in HH objects are typically about 9,000–12,000 K,] similar to those found in other ionized nebulae such as H II region
An H II region is a region of interstellar atomic hydrogen that is ionized. It is typically in a molecular cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds of light year ...
s and planetary nebula
A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives.
The term "planetary nebula" is a misnomer because they are unrelated to planets. The ...
e.[ Densities, on the other hand, are higher than in other nebulae, ranging from a few thousand to a few tens of thousands of particles per cm3,] compared to a few thousand particles per cm3 in most H II regions and planetary nebulae.[
Densities also decrease as the source evolves over time.][ HH objects consist mostly of hydrogen and ]helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, which account for about 75% and 24% of their mass respectively. Around 1% of the mass of HH objects is made up of heavier chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s, including oxygen, sulfur, nitrogen
Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
, iron
Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
, calcium
Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
and magnesium
Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
. Abundances of these elements, determined from emission lines of respective ions, are generally similar to their cosmic abundances. Many chemical compounds found in the surrounding interstellar medium, but not present in the source material, such as metal hydrides
In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all co ...
, are believed to have been produced by shock-induced chemical reactions. Around 20–30% of the gas in HH objects is ionized near the source star, but this proportion decreases at increasing distances. This implies the material is ionized in the polar jet, and recombines as it moves away from the star, rather than being ionized by later collisions. Shocking at the end of the jet can re-ionise some material, giving rise to bright "caps".[
]
Numbers and distribution
HH objects are named approximately in order of their identification; HH 1/2 being the earliest such objects to be identified.[ More than a thousand individual objects are now known.] They are always present in star-forming H II regions, and are often found in large groups. They are typically observed near Bok globule
In astronomy, Bok globules are isolated and relatively small dark nebulae containing dense cosmic dust and gas from which star formation may take place. Bok globules are found within H II regions, and typically have a mass of about two to 50 sol ...
s (dark nebula
A dark nebula or absorption nebula is a type of interstellar cloud, particularly molecular clouds, that is so dense that it obscures the visible wavelengths of light from objects behind it, such as background stars and emission or reflection ...
e which contain very young stars) and often emanate from them. Several HH objects have been seen near a single energy source, forming a string of objects along the line of the polar axis of the parent star. The number of known HH objects has increased rapidly over the last few years, but that is a very small proportion of the estimated up to 150,000 in the Milky Way
The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
,[ the vast majority of which are too far away to be resolved. Most HH objects lie within about one ]parsec
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (AU), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, and ...
of their parent star. Many, however, are seen several parsecs away.
HH 46/47
HH 46/47 is a complex of Herbig–Haro objects (HH objects), located around 450 parsecs (about 1,470 light-years) away in a Bok globule near the Gum nebula. Astrophysical jet, Jets of partially ionized gas emerging from a Protostar, young star p ...
is located about away from the Sun and is powered by a class I protostar binary
Binary may refer to:
Science and technology Mathematics
* Binary number, a representation of numbers using only two values (0 and 1) for each digit
* Binary function, a function that takes two arguments
* Binary operation, a mathematical op ...
. The bipolar jet is slamming into the surrounding medium at a velocity of 300 kilometers per second, producing two emission caps about apart. Jet outflow is accompanied by a long molecular gas outflow which is swept up by the jet itself. Infrared studies by Spitzer Space Telescope
The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), was an infrared space telescope launched in 2003, that was deactivated when operations ended on 30 January 2020. Spitzer was the third space telescope dedicate ...
have revealed a variety of chemical compounds in the molecular outflow, including water (ice), methanol
Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical compound and the simplest aliphatic Alcohol (chemistry), alcohol, with the chemical formula (a methyl group linked to a hydroxyl group, often ab ...
, methane
Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
, carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
(dry ice
Dry ice is the solid form of carbon dioxide. It is commonly used for temporary refrigeration as CO2 does not have a liquid state at normal atmospheric pressure and Sublimation (phase transition), sublimes directly from the solid state to the gas ...
) and various silicate
A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is also used ...
s.[ Located around away in the Orion A molecular cloud, HH 34 is produced by a highly collimated bipolar jet powered by a class I protostar. Matter in the jet is moving at about 220 kilometers per second. Two bright bow shocks, separated by about , are present on the opposite sides of the source, followed by series of fainter ones at larger distances, making the whole complex about long. The jet is surrounded by a long weak molecular outflow near the source.][
]
Source stars
The stars from which HH jets are emitted are all very young stars, a few tens of thousands to about a million years old. The youngest of these are still protostars in the process of collecting from their surrounding gases. Astronomers divide these stars into classes 0, I, II and III, according to how much infrared radiation the stars emit. A greater amount of infrared radiation implies a larger amount of cooler material surrounding the star, which indicates it is still coalescing. The numbering of the classes arises because class 0 objects (the youngest) were not discovered until classes I, II and III had already been defined.
Class 0 objects are only a few thousand years old; so young that they are not yet undergoing nuclear fusion reactions at their centres. Instead, they are powered only by the gravitational potential energy
Gravitational energy or gravitational potential energy is the potential energy an object with mass has due to the gravitational potential of its position in a gravitational field. Mathematically, it is the minimum Work (physics), mechanical work t ...
released as material falls onto them.[ They mostly contain molecular outflows with low velocities (less than a hundred kilometres per second) and weak emissions in the outflows.][ Nuclear fusion has begun in the cores of Class I objects, but gas and dust are still falling onto their surfaces from the surrounding nebula, and most of their luminosity is accounted for by gravitational energy. They are generally still shrouded in dense clouds of dust and gas, which obscure all their ]visible light
Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
and as a result can only be observed at infrared and radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
wavelengths. Outflows from this class are dominated by ionized species and velocities can range up to 400 kilometres per second.[ The in-fall of gas and dust has largely finished in Class II objects (Classical T Tauri stars), but they are still surrounded by disks of dust and gas, and produce weak outflows of low luminosity.][ Class III objects (Weak-line T Tauri stars) have only trace remnants of their original accretion disk.]
About 80% of the stars giving rise to HH objects are binary or multiple systems (two or more stars orbiting each other), which is a much higher proportion than that found for low mass stars on the main sequence
In astronomy, the main sequence is a classification of stars which appear on plots of stellar color index, color versus absolute magnitude, brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or d ...
. This may indicate that binary systems are more likely to generate the jets which give rise to HH objects, and evidence suggests the largest HH outflows might be formed when multiple–star systems disintegrate. It is thought that most stars originate from multiple star systems, but that a sizable fraction of these systems are disrupted before their stars reach the main sequence due to gravitation
In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
al interactions with nearby stars and dense clouds of gas.[
The first and currently only (as of May 2017) large-scale Herbig-Haro object around a proto-]brown dwarf
Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main sequence, main-sequence stars. Their mass is approximately 13 to 80 Jupiter mass, times that of Jupiter ()not big en ...
is HH 1165, which is connected to the proto-brown dwarf Mayrit 1701117. HH 1165 has a length of 0.8 light-years
A light-year, alternatively spelled light year (ly or lyr), is a unit of length used to express astronomical distances and is equal to exactly , which is approximately 9.46 trillion km or 5.88 trillion mi. As defined by the International Astro ...
(0.26 parsec
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (AU), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, and ...
) and is located in the vicinity of the sigma Orionis cluster. Previously only small mini-jets (≤0.03 parsec) were found around proto-brown dwarfs.
Infrared counterparts
HH objects associated with very young stars or very massive protostars are often hidden from view at optical wavelengths by the cloud of gas and dust from which they form. The intervening material can diminish the visual magnitude
Apparent magnitude () is a measure of the brightness of a star, astronomical object or other celestial objects like artificial satellites. Its value depends on its intrinsic luminosity, its distance, and any extinction of the object's light ca ...
by factors of tens or even hundreds at optical wavelengths. Such deeply embedded objects can only be observed at infrared or radio wavelengths,[ usually in the frequencies of hot molecular hydrogen or warm ]carbon monoxide
Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
emission.[ In recent years, infrared images have revealed dozens of examples of "infrared HH objects". Most look like bow waves (similar to the waves at the head of a ship), and so are usually referred to as molecular "bow shocks". The physics of infrared bow shocks can be understood in much the same way as that of HH objects, since these objects are essentially the same – ]supersonic
Supersonic speed is the speed of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately . Speeds greater than five times ...
shocks driven by collimated jets from the opposite poles of a protostar. It is only the conditions in the jet and surrounding cloud that are different, causing infrared emission from molecules rather than optical emission from atoms and ions.[
In 2009 the acronym "MHO", for Molecular Hydrogen emission-line Object, was approved for such objects, detected in near-infrared, by the ]International Astronomical Union
The International Astronomical Union (IAU; , UAI) is an international non-governmental organization (INGO) with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreach, education, and developmen ...
Working Group on Designations, and has been entered into their on-line Reference Dictionary of Nomenclature of Celestial Objects. As of 2010, almost 1000 objects are contained in the MHO catalog.
Ultraviolet Herbig-Haro objects
HH objects have been observed in the ultraviolet spectrum.
See also
* Bipolar outflow
A bipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars (young, forming stars), or with evolved post-AGB stars (often in the form of bipolar nebulae).
Protostars
I ...
* Protostar
A protostar is a very young star that is still gathering mass from its parent molecular cloud. It is the earliest phase in the process of stellar evolution. For a low-mass star (i.e. that of the Sun or lower), it lasts about 500,000 years. The p ...
* Protoplanetary disk
A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may not be considered an accretion disk; while the two are sim ...
References
External links
Catalogue of HH Objects at VizieR
A Catalogue of Molecular Hydrogen Emission-Line Objects in Outflows from Young Stars: MHO Catalogue
{{DEFAULTSORT:Herbig-Haro Object
*
Nebulae
Star formation
Articles containing video clips