Harborth's Conjecture
   HOME

TheInfoList



OR:

In mathematics, Harborth's conjecture states that every
planar graph In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cro ...
has a planar
drawing Drawing is a visual art that uses an instrument to mark paper or another two-dimensional surface. The instruments used to make a drawing are pencils, crayons, pens with inks, brushes with paints, or combinations of these, and in more mod ...
in which every edge is a straight segment of
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
length.. This conjecture is named after Heiko Harborth, and (if true) would strengthen Fáry's theorem on the existence of straight-line drawings for every planar graph. For this reason, a drawing with integer edge lengths is also known as an integral Fáry embedding.. Despite much subsequent research, Harborth's conjecture remains unsolved.


Special classes of graphs

Although Harborth's conjecture is not known to be true for all planar graphs, it has been proven for several special kinds of planar graph. One class of graphs that have integral Fáry embeddings are the graphs that can be reduced to the
empty graph In the mathematical field of graph theory, the term "null graph" may refer either to the order- zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph"). Order-zero graph The order-zero graph, , is ...
by a sequence of operations of two types: *Removing a vertex of degree at most two. *Replacing a vertex of degree three by an edge between two of its neighbors. (If such an edge already exists, the degree three vertex can be removed without adding another edge between its neighbors.) For such a graph, a rational Fáry embedding can be constructed incrementally by reversing this removal process, using the facts that the set of points that are at a rational distance from two given points are dense in the plane, and that if three points have rational distance between one pair and square-root-of-rational distance between the other two pairs, then the points at rational distances from all three are again dense in the plane. The distances in such an embedding can be made into integers by scaling the embedding by an appropriate factor. Based on this construction, the graphs known to have integral Fáry embeddings include the bipartite planar graphs, (2,1)-sparse planar graphs, planar graphs of
treewidth In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. The gr ...
at most 3, and graphs of degree at most four that either contain a
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, ...
subgraph or are not 4-edge-connected. In particular, the graphs that can be reduced to the empty graph by the removal only of vertices of degree at most two (the 2-degenerate planar graphs) include both the
outerplanar graph In graph theory, an outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing. Outerplanar graphs may be characterized (analogously to Wagner's theorem for planar graphs) by the two fo ...
s and the
series–parallel graph In graph theory, series–parallel graphs are graphs with two distinguished vertices called ''terminals'', formed recursively by two simple composition operations. They can be used to model series and parallel electric circuits. Definition and t ...
s. However, for the outerplanar graphs a more direct construction of integral Fáry embeddings is possible, based on the existence of infinite subsets of the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
in which all distances are rational. Additionally, integral Fáry embeddings are known for each of the five
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s.


Related conjectures

A stronger version of Harborth's conjecture, posed by , asks whether every planar graph has a planar drawing in which the vertex coordinates as well as the edge lengths are all integers. It is known to be true for 3-regular graphs, for graphs that have maximum degree 4 but are not 4-regular,. and for planar 3-trees. Another unsolved problem in geometry, the Erdős–Ulam problem, concerns the existence of dense subsets of the plane in which all distances are
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s. If such a subset existed, it would form a universal point set that could be used to draw all planar graphs with rational edge lengths (and therefore, after scaling them appropriately, with integer edge lengths). However, Ulam conjectured that dense rational-distance sets do not exist.. According to the Erdős–Anning theorem, infinite non-collinear point sets with all distances being integers cannot exist. This does not rule out the existence of sets with all distances rational, but it does imply that in any such set the denominators of the rational distances must grow arbitrarily large.


See also

*
Integer triangle An integer triangle or integral triangle is a triangle all of whose sides have lengths that are integers. A rational triangle can be defined as one having all sides with rational length; any such rational triangle can be integrally rescaled (ca ...
, an integral Fáry embedding of the triangle graph * Matchstick graph, a graph that can be drawn planarly with all edge lengths equal to 1 * Erdős–Diophantine graph, a complete graph with integer distances that cannot be extended to a larger complete graph with the same property *
Euler brick In mathematics, an Euler brick, named after Leonhard Euler, is a rectangular cuboid whose edges and face diagonals all have integer lengths. A primitive Euler brick is an Euler brick whose edge lengths are relatively prime. A perfect Euler bri ...
, an integer-distance realization problem in three dimensions


References

{{reflist, 30em Conjectures Unsolved problems in graph theory Planar graphs Arithmetic problems of plane geometry