HOME

TheInfoList



OR:

In
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, a branch of mathematics, group objects are certain generalizations of
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
that are built on more complicated structures than sets. A typical example of a group object is a topological group, a group whose underlying set is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
such that the group operations are
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous g ...
.


Definition

Formally, we start with a
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) *C ...
''C'' with finite products (i.e. ''C'' has a terminal object 1 and any two
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ai ...
of ''C'' have a
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
). A group object in ''C'' is an object ''G'' of ''C'' together with
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
s *''m'' : ''G'' × ''G'' → ''G'' (thought of as the "group multiplication") *''e'' : 1 → ''G'' (thought of as the "inclusion of the identity element") *''inv'' : ''G'' → ''G'' (thought of as the "inversion operation") such that the following properties (modeled on the group axioms – more precisely, on the definition of a group used in universal algebra) are satisfied * ''m'' is associative, i.e. ''m'' (''m'' × id''G'') = ''m'' (id''G'' × ''m'') as morphisms ''G'' × ''G'' × ''G'' → ''G'', and where e.g. ''m'' × id''G'' : ''G'' × ''G'' × ''G'' → ''G'' × ''G''; here we identify ''G'' × (''G'' × ''G'') in a canonical manner with (''G'' × ''G'') × ''G''. * ''e'' is a two-sided unit of ''m'', i.e. ''m'' (id''G'' × ''e'') = ''p''1, where ''p''1 : ''G'' × 1 → ''G'' is the canonical projection, and ''m'' (''e'' × id''G'') = ''p''2, where ''p''2 : 1 × ''G'' → ''G'' is the canonical projection * ''inv'' is a two-sided inverse for ''m'', i.e. if ''d'' : ''G'' → ''G'' × ''G'' is the diagonal map, and ''e''''G'' : ''G'' → ''G'' is the composition of the unique morphism ''G'' → 1 (also called the counit) with ''e'', then ''m'' (id''G'' × ''inv'') ''d'' = ''e''''G'' and ''m'' (''inv'' × id''G'') ''d'' = ''e''''G''. Note that this is stated in terms of maps – product and inverse must be maps in the category – and without any reference to underlying "elements" of the group object – categories in general do not have elements of their objects. Another way to state the above is to say ''G'' is a group object in a category ''C'' if for every object ''X'' in ''C'', there is a group structure on the morphisms Hom(''X'', ''G'') from ''X'' to ''G'' such that the association of ''X'' to Hom(''X'', ''G'') is a (contravariant) functor from ''C'' to the
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories The ...
.


Examples

* Each set ''G'' for which a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
structure (''G'', ''m'', ''u'', −1) can be defined can be considered a group object in the category of sets. The map ''m'' is the group operation, the map ''e'' (whose domain is a
singleton Singleton may refer to: Sciences, technology Mathematics * Singleton (mathematics), a set with exactly one element * Singleton field, used in conformal field theory Computing * Singleton pattern, a design pattern that allows only one instance ...
) picks out the identity element ''u'' of ''G'', and the map ''inv'' assigns to every group element its inverse. ''e''''G'' : ''G'' → ''G'' is the map that sends every element of ''G'' to the identity element. * A topological group is a group object in the category of topological spaces with
continuous functions In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in val ...
. * A
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the ad ...
is a group object in the category of smooth manifolds with
smooth map In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if ...
s. * A
Lie supergroup The concept of supergroup is a generalization of that of group. In other words, every supergroup carries a natural group structure, but there may be more than one way to structure a given group as a supergroup. A supergroup is like a Lie group in ...
is a group object in the category of supermanifolds. * An
algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. ...
is a group object in the category of
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
. In modern
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrica ...
, one considers the more general group schemes, group objects in the category of
scheme A scheme is a systematic plan for the implementation of a certain idea. Scheme or schemer may refer to: Arts and entertainment * ''The Scheme'' (TV series), a BBC Scotland documentary series * The Scheme (band), an English pop band * ''The Schem ...
s. * A localic group is a group object in the category of locales. * The group objects in the category of groups (or
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids a ...
s) are the
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s. The reason for this is that, if ''inv'' is assumed to be a homomorphism, then ''G'' must be abelian. More precisely: if ''A'' is an abelian group and we denote by ''m'' the group multiplication of ''A'', by ''e'' the inclusion of the identity element, and by ''inv'' the inversion operation on ''A'', then (''A'', ''m'', ''e'', ''inv'') is a group object in the category of groups (or monoids). Conversely, if (''A'', ''m'', ''e'', ''inv'') is a group object in one of those categories, then ''m'' necessarily coincides with the given operation on ''A'', ''e'' is the inclusion of the given identity element on ''A'', ''inv'' is the inversion operation and ''A'' with the given operation is an abelian group. See also Eckmann–Hilton argument. * The strict
2-group In mathematics, a 2-group, or 2-dimensional higher group, is a certain combination of group and groupoid. The 2-groups are part of a larger hierarchy of ''n''-groups. In some of the literature, 2-groups are also called gr-categories or groupal ...
is the group object in the
category of small categories In mathematics, specifically in category theory, the category of small categories, denoted by Cat, is the category whose objects are all small categories and whose morphisms are functors between categories. Cat may actually be regarded as a 2-ca ...
. * Given a category ''C'' with finite
coproduct In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coprodu ...
s, a cogroup object is an object ''G'' of ''C'' together with a "comultiplication" ''m'': ''G'' → ''G'' \oplus ''G,'' a "coidentity" ''e'': ''G'' → 0, and a "coinversion" ''inv'': ''G'' → ''G'' that satisfy the
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ...
versions of the axioms for group objects. Here 0 is the initial object of ''C''. Cogroup objects occur naturally in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
.


Group theory generalized

Much of
group theory In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as ...
can be formulated in the context of the more general group objects. The notions of group homomorphism,
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgrou ...
, normal subgroup and the isomorphism theorems are typical examples. However, results of group theory that talk about individual elements, or the order of specific elements or subgroups, normally cannot be generalized to group objects in a straightforward manner.


See also

* Hopf algebras can be seen as a generalization of group objects to
monoidal categories In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and r ...
. *
Groupoid object In category theory, a branch of mathematics, a groupoid object is both a generalization of a groupoid which is built on richer structures than sets, and a generalization of a group objects when the multiplication is only partially defined. Defi ...


References

* * {{Lang Algebra, edition=3r Group theory Objects (category theory)