HOME

TheInfoList



OR:

Gravitational collapse is the contraction of an
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often us ...
due to the influence of its own
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
, which tends to draw matter inward toward the
center of gravity In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force ma ...
. Gravitational collapse is a fundamental mechanism for structure formation in the universe. Over time an initial, relatively smooth distribution of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
will collapse to form pockets of higher density, typically creating a hierarchy of condensed structures such as clusters of galaxies, stellar groups,
stars A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth ma ...
and
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s. A star is born through the gradual gravitational collapse of a cloud of
interstellar matter In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar ...
. The compression caused by the collapse raises the temperature until
thermonuclear fusion Thermonuclear fusion is the process of atomic nuclei combining or “fusing” using high temperatures to drive them close enough together for this to become possible. There are two forms of thermonuclear fusion: ''uncontrolled'', in which the re ...
occurs at the center of the star, at which point the collapse gradually comes to a halt as the outward
thermal pressure In thermodynamics, thermal pressure (also known as the thermal pressure coefficient) is a measure of the relative pressure change of a fluid or a solid as a response to a temperature change at constant volume. The concept is related to the Pressur ...
balances the gravitational forces. The star then exists in a state of
dynamic equilibrium In chemistry, a dynamic equilibrium exists once a reversible reaction occurs. Substances transition between the reactants and products at equal rates, meaning there is no net change. Reactants and products are formed at such a rate that the co ...
. Once all its energy sources are exhausted, a star will again collapse until it reaches a new equilibrium state.


Star formation

An interstellar cloud of gas will remain in
hydrostatic equilibrium In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary ...
as long as the
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
of the gas
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
is in balance with the
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potentia ...
of the internal
gravitational force In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
. Mathematically this is expressed using the
virial theorem In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. ...
, which states that to maintain equilibrium, the gravitational potential energy must equal twice the internal thermal energy. If a pocket of gas is massive enough that the gas pressure is insufficient to support it, the cloud will undergo gravitational collapse. The critical mass above which a cloud will undergo such collapse is called the
Jeans mass In stellar physics, the Jeans instability causes the collapse of interstellar gas clouds and subsequent star formation, named after James Jeans. It occurs when the internal gas pressure is not strong enough to prevent gravitational collapse of ...
. This mass depends on the temperature and density of the cloud but is typically thousands to tens of thousands of
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es.


Stellar remnants

At what is called the star's death (when a star has burned out its fuel supply), it will undergo a contraction that can be halted only if it reaches a new state of equilibrium. Depending on the mass during its lifetime, these stellar remnants can take one of three forms: *
White dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
s, in which gravity is opposed by
electron degeneracy pressure Electron degeneracy pressure is a particular manifestation of the more general phenomenon of quantum degeneracy pressure. The Pauli exclusion principle disallows two identical half-integer spin particles (electrons and all other fermions) from si ...
*
Neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s, in which gravity is opposed by
neutron degeneracy pressure Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of, thermal pressure. The description applies to matter composed of electrons, protons, neu ...
and short-range repulsive neutron–neutron interactions mediated by the
strong force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
*
Black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
, in which there is no force strong enough to resist gravitational collapse


White dwarf

The collapse of the stellar core to a white dwarf takes place over tens of thousands of years, while the star blows off its outer envelope to form a
planetary nebula A planetary nebula (PN, plural PNe) is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives. The term "planetary nebula" is a misnomer because they are unrelate ...
. If it has a
companion star A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in wh ...
, a white dwarf-sized object can accrete matter from the companion star. Before it reaches the
Chandrasekhar limit The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about (). White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compa ...
(about one and a half times the mass of our Sun, at which point gravitational collapse would start again), the increasing density and temperature within a carbon-oxygen white dwarf initiate a new round of nuclear fusion, which is not regulated because the star's weight is supported by degeneracy rather than thermal pressure, allowing the temperature to rise exponentially. The resulting runaway
carbon detonation Carbon detonation or carbon deflagration is the violent reignition of thermonuclear fusion in a white dwarf star that was previously slowly cooling. It involves a runaway thermonuclear process which spreads through the white dwarf in a matter of se ...
completely blows the star apart in a
type Ia supernova A Type Ia supernova (read: "type one-A") is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white ...
.


Neutron star

Neutron stars are formed by the gravitational collapse of the cores of larger stars. They are the remnant of supernova types Ib, Ic, and II. Neutron stars are expected to have a skin or "atmosphere" of normal matter on the order of a millimeter thick, underneath which they are composed almost entirely of closely packed neutrons (popularly called "
neutronium Neutronium (sometimes shortened to neutrium, also referred to as neutrite) is a hypothetical substance composed purely of neutrons. The word was coined by scientist Andreas von Antropoff in 1926 (before the 1932 discovery of the neutron) for the ...
") with a slight dusting of free electrons and protons mixed in. This degenerate neutron matter has a density of about . The appearance of stars composed of
exotic matter There are several proposed types of exotic matter: * Hypothetical particles and states of matter that have "exotic" physical properties that would violate known laws of physics, such as a particle having a negative mass. * Hypothetical partic ...
and their internal layered structure is unclear since any proposed
equation of state In physics, chemistry, and thermodynamics, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or intern ...
of
degenerate matter Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of, thermal pressure. The description applies to matter composed of electrons, protons, n ...
is highly speculative. Other forms of hypothetical degenerate matter may be possible, and the resulting
quark star A quark star is a hypothetical type of compact, exotic star, where extremely high core temperature and pressure has forced nuclear particles to form quark matter, a continuous state of matter consisting of free quarks. Background Some massive ...
s, strange stars (a type of quark star), and preon stars, if they exist, would, for the most part, be indistinguishable from a
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
: In most cases, the
exotic matter There are several proposed types of exotic matter: * Hypothetical particles and states of matter that have "exotic" physical properties that would violate known laws of physics, such as a particle having a negative mass. * Hypothetical partic ...
would be hidden under a crust of "ordinary" degenerate neutrons.


Black holes

According to Einstein's theory, for even larger stars, above the Landau–Oppenheimer–Volkoff limit, also known as the
Tolman–Oppenheimer–Volkoff limit The Tolman–Oppenheimer–Volkoff limit (or TOV limit) is an upper bound to the mass of cold, nonrotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. If the mass of the said star reaches the limit it will collapse to ...
(roughly double the mass of the Sun) no known form of cold matter can provide the force needed to oppose gravity in a new dynamical equilibrium. Hence, the collapse continues with nothing to stop it. 250px, left, Simulated view from outside black hole with thin accretion disc Once a body collapses to within its
Schwarzschild radius The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteris ...
it forms what is called a
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
, meaning a spacetime region from which not even light can escape. It follows from
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
and the theorem of
Roger Penrose Sir Roger Penrose (born 8 August 1931) is an English mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fello ...
that the subsequent formation of some kind of singularity is inevitable. Nevertheless, according to Penrose's
cosmic censorship hypothesis The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity. Singularities that arise in the solutions of Einstein's equations are typically ...
, the singularity will be confined within the event horizon bounding the
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
, so the spacetime region outside will still have a well-behaved geometry, with strong but finite curvature, that is expected to evolve towards a rather simple form describable by the historic Schwarzschild metric in the spherical limit and by the more recently discovered
Kerr metric The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of gen ...
if angular momentum is present. On the other hand, the nature of the kind of singularity to be expected inside a black hole remains rather controversial. According to theories based on
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, at a later stage, the collapsing object will reach the maximum possible energy density for a certain volume of space or the Planck density (as there is nothing that can stop it). This is the point at which it has been hypothesized that the known laws of gravity cease to be valid. There are competing theories as to what occurs at this point. For example loop quantum gravity predicts that a
Planck star In loop quantum gravity theory, a Planck star is a hypothetical astronomical object, theorized as a compact, exotic star, that exists within a black hole's event horizon, created when the energy density of a collapsing star reaches the Plan ...
would form. Regardless, it is argued that gravitational collapse ceases at that stage and a singularity, therefore, does not form.


Theoretical minimum radius for a star

The radii of larger mass neutron stars (about 2.8 solar mass) are estimated to be about 12 km, or approximately 2.0 times their equivalent Schwarzschild radius. It might be thought that a sufficiently massive neutron star could exist within its Schwarzschild radius (1.0 SR) and appear like a black hole without having all the mass compressed to a singularity at the center; however, this is probably incorrect. Within the
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
, the matter would have to move outward faster than the speed of light in order to remain stable and avoid collapsing to the center. No physical force, therefore, can prevent a star smaller than 1.0 SR from collapsing to a singularity (at least within the currently accepted framework of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
; this does not hold for the Einstein–Yang-Mills–Dirac system). A model for the nonspherical collapse in general relativity with the emission of matter and
gravitational waves Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
has been presented.


See also

* Big Crunch *
Gravitational compression Gravitational compression is a phenomenon in which gravity, acting on the mass of an object, compresses it, reducing its size and increasing the object's density. At the center of a planet or star, gravitational compression produces heat by the ...
*
Stellar evolution Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is cons ...
*
Thermal runaway Thermal runaway describes a process that is accelerated by increased temperature, in turn releasing energy that further increases temperature. Thermal runaway occurs in situations where an increase in temperature changes the conditions in a way t ...


References


Bibliography

*


External links


Gravitational collapse on arxiv.org
{{DEFAULTSORT:Gravitational Collapse Black holes