HOME

TheInfoList



OR:

Graphene nanoribbons (GNRs, also called nano-graphene ribbons or nano-graphite ribbons) are strips of
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
with width less than 100 nm. Graphene ribbons were introduced as a theoretical model by Mitsutaka Fujita and coauthors to examine the edge and nanoscale size effect in graphene.


Production


Nanotomy

Large quantities of width-controlled GNRs can be produced via
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
nanotomy, where applying a sharp diamond knife on graphite produces graphite nanoblocks, which can then be exfoliated to produce GNRs as shown by Vikas Berry. GNRs can also be produced by "unzipping" or axially cutting
nanotubes A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon nan ...
. In one such method multi-walled carbon nanotubes were unzipped in solution by action of
potassium permanganate Potassium permanganate is an inorganic compound with the chemical formula KMnO4. It is a purplish-black crystalline salt, that dissolves in water as K+ and , an intensely pink to purple solution. Potassium permanganate is widely used in the ...
and
sulfuric acid Sulfuric acid ( American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular fo ...
. In another method GNRs were produced by
plasma etching Plasma etching is a form of plasma processing used to fabricate integrated circuits. It involves a high-speed stream of glow discharge ( plasma) of an appropriate gas mixture being shot (in pulses) at a sample. The plasma source, known as etch sp ...
of nanotubes partly embedded in a
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and ...
film. More recently, graphene nanoribbons were grown onto
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal si ...
(SiC) substrates using
ion implantation Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fa ...
followed by vacuum or laser annealing. The latter technique allows any pattern to be written on SiC substrates with 5 nm precision.


Epitaxy

GNRs were grown on the edges of three-dimensional structures etched into
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal si ...
wafers. When the wafers are heated to approximately , silicon is preferentially driven off along the edges, forming nanoribbons whose structure is determined by the pattern of the three-dimensional surface. The ribbons had perfectly smooth edges, annealed by the fabrication process. Electron mobility measurements surpassing one million correspond to a
sheet resistance Sheet resistance, is a measure of resistance of thin films that are uniform in thickness. It is commonly used to characterize materials made by semiconductor doping, metal deposition, resistive paste printing, and glass coating. Examples of thes ...
of one ohm per square— two orders of magnitude lower than in two-dimensional graphene.


Chemical vapor deposition

Nanoribbons narrower than 10 nm grown on a
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors si ...
wafer act like semiconductors, exhibiting a
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (i ...
. Inside a reaction chamber, using
chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substra ...
, methane is used to deposit hydrocarbons on the wafer surface, where they react with each other to produce long, smooth-edged ribbons. The ribbons were used to create prototype
transistors upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch e ...
. At a very slow growth rate, the graphene crystals naturally grow into long nanoribbons on a specific
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors si ...
crystal facet. By controlling the growth rate and growth time, the researchers achieved control over the nanoribbon width. Recently, researchers from SIMIT (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) reported on a strategy to grow graphene nanoribbons with controlled widths and smooth edges directly onto dielectric
hexagonal boron nitride Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagona ...
(h-BN) substrates. The team use nickel nanoparticles to etch monolayer-deep, nanometre-wide trenches into h-BN, and subsequently fill them with graphene using
chemical vapour deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substra ...
. Modifying the etching parameters allows the width of the trench to be tuned to less than 10 nm, and the resulting sub-10-nm ribbons display bandgaps of almost 0.5 eV. Integrating these nanoribbons into
field effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs contro ...
devices reveals on–off ratios of greater than 104 at room temperature, as well as high carrier mobilities of ~750 cm2 V−1 s−1.


Multistep nanoribbon synthesis

A bottom-up approach was investigated. In 2017 dry contact transfer was used to press a fiberglass applicator coated with a powder of atomically precise graphene nanoribbons on a hydrogen-passivated Si(100) surface under
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
. 80 of 115 GNRs visibly obscured the substrate lattice with an average apparent height of 0.30 nm. The GNRs do not align to the Si lattice, indicating a weak coupling. The average bandgap over 21 GNRs was 2.85 eV with a standard deviation of 0.13 eV. The method unintentionally overlapped some nanoribbons, allowing the study of multilayer GNRs. Such overlaps could be formed deliberately by manipulation with a
scanning tunneling microscope A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986 ...
. Hydrogen depassivation left no band-gap. Covalent bonds between the Si surface and the GNR leads to metallic behavior. The Si surface atoms move outward, and the GNR changes from flat to distorted, with some C atoms moving in toward the Si surface.


Electronic structure

The electronic states of GNRs largely depend on the edge structures (armchair or zigzag). In zigzag edges each successive edge segment is at the opposite angle to the previous. In armchair edges, each pair of segments is a 120/-120 degree rotation of the prior pair. Zigzag edges provide the edge localized state with non-bonding molecular orbitals near the Fermi energy. They are expected to have large changes in optical and electronic properties from quantization. Calculations based on tight binding theory predict that zigzag GNRs are always metallic while armchairs can be either metallic or semiconducting, depending on their width. However,
density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
(DFT) calculations show that armchair nanoribbons are semiconducting with an energy gap scaling with the inverse of the GNR width. Experiments verified that energy gaps increase with decreasing GNR width. Graphene nanoribbons with controlled edge orientation have been fabricated by
scanning tunneling microscope A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986 ...
(STM) lithography. Energy gaps up to 0.5 eV in a 2.5 nm wide armchair ribbon were reported. Armchair nanoribbons are metallic or semiconducting and present spin polarized edges. Their gap opens thanks to an unusual antiferromagnetic coupling between the
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnets ...
s at opposite edge carbon atoms. This gap size is inversely proportional to the ribbon width and its behavior can be traced back to the spatial distribution properties of edge-state wave functions, and the mostly local character of the exchange interaction that originates the spin polarization. Therefore, the quantum confinement, inter-edge superexchange, and intra-edge direct exchange interactions in zigzag GNR are important for its magnetism and band gap. The edge magnetic moment and band gap of zigzag GNR are reversely proportional to the electron/hole concentration and they can be controlled by alkaline
adatom An adatom is an atom that lies on a crystal surface, and can be thought of as the opposite of a surface vacancy. This term is used in surface chemistry and epitaxy, when describing single atoms lying on surfaces and surface roughness. The word ...
s. Their 2D structure, high electrical and
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
and low noise also make GNRs a possible alternative to copper for integrated circuit interconnects. Research is exploring the creation of quantum dots by changing the width of GNRs at select points along the ribbon, creating
quantum confinement A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy (kinetic energy in the case of a gravitational potential well) because it is captu ...
. Heterojunctions inside single graphene nanoribbons have been realized, among which structures that have been shown to function as tunnel barriers. Graphene nanoribbons possess
semiconductive A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
properties and may be a technological alternative to silicon semiconductors capable of sustaining
microprocessor A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circu ...
clock speeds in the vicinity of 1 THz
field-effect transistors The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs control ...
less than 10 nm wide have been created with GNR – "GNRFETs" – with an Ion/Ioff ratio >106 at room temperature. File:cnt_gnrarm_v3.gif, GNR band structure for armchair type. Tight binding calculations show that armchair type can be semiconducting or metallic depending on width (chirality). File:cnt_zz_v3.gif, GNR band structure for zigzag type. Tight binding calculations predict that zigzag type is always metallic. File:Graphene_Nanoribbons_of_controlled_width.jpg,
TEM Tem or TEM may refer to: Acronyms * Threat and error management, an aviation safety management model. * Telecom Expense Management * Telecom Equipment Manufacturer * TEM (currency), local to Volos, Greece * TEM (nuclear propulsion), a Russian ...
micrographs of GNRs of (a) w=15, (b) w=30, (c) w=40 (exfoliating), and (d) w=60 nm deposited on 400 mesh lacey carbon grids and (e) FESEM micrograph of 600 nm ribbon. (f) Electron microscope images of a 120-nm graphene ribbons (FESEM), (g) 50 nm square GQDs (FESEM), (h,i) 25×100 nm2 rectangular GQDs (FESEM), and (j) 8°-angled tapered GNR (or triangular GQD) (FESEM)). The large densities of square and rectangular GQDs (g) showed extensive folding (white arrows). Bar sizes=(a) 250 nm, (b,g,i) 50 nm, (c,d) 500 nm, and (h) 1 μm.


Mechanical properties

While it is difficult to prepare graphene nanoribbons with precise geometry to conduct the real
tensile test Tensile testing, also known as tension testing, is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimat ...
due to the limiting resolution in nanometer scale, the mechanical properties of the two most common graphene nanoribbons (zigzag and armchair) were investigated by computational modeling using
density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
,
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the s ...
, and
finite element method The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat ...
. Since the two-dimensional
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
sheet with strong bonding is known to be one of the stiffest materials, graphene nanoribbons Young's modulus also has a value of over 1 TPa. The Young's modulus,
shear modulus In materials science, shear modulus or modulus of rigidity, denoted by ''G'', or sometimes ''S'' or ''μ'', is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: :G \ \stackr ...
and
Poisson's ratio In materials science and solid mechanics, Poisson's ratio \nu ( nu) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value of Poi ...
of graphene nanoribbons are different with varying sizes (with different length and width) and shapes. These mechanical properties are anisotropic and would usually be discussed in two in-plane directions, parallel and perpendicular to the one-dimensional periodic direction. Mechanical properties here will be a little bit different from the two-dimensional graphene sheets because of the distinct geometry, bond length, and bond strength particularly at the edge of graphene nanoribbons. It is possible to tune these nanomechanical properties with further chemical doping to change the bonding environment at the edge of graphene nanoribbons. While increasing the width of graphene nanoribbons, the mechanical properties will converge to the value measured on the graphene sheets. One analysis predicted the high Young's modulus for armchair graphene nanoribbons to be around 1.24 TPa by the molecular dynamics method. They also showed the nonlinear elastic behaviors with higher-order terms in the stress-strain curve. In the higher strain region, it would need even higher-order (>3) to fully describe the nonlinear behavior. Other scientists also reported the nonlinear elasticity by the finite element method, and found that Young's modulus, tensile strength, and
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
of armchair graphene nanoribbons are all greater than those of zigzag graphene nanoribbons. Another report predicted the linear elasticity for the strain between -0.02 and 0.02 on the zigzag graphene nanoribbons by the density functional theory model. Within the linear region, the electronic properties would be relatively stable under the slightly changing geometry. The energy gaps increase from -0.02 eV to 0.02 eV for the strain between -0.02 and 0.02, which provides the feasibilities for future engineering applications. The tensile strength of the armchair graphene nanoribbons is 175 GPa with the great ductility of 30.26%
fracture Fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displ ...
strain, which shows the greater mechanical properties comparing to the value of 130 GPa and 25% experimentally measured on monolayer graphene. As expected, graphene nanoribbons with smaller width would completely break down faster, since the ratio of the weaker edged bonds increased. While the tensile strain on graphene nanoribbons reached its maximum, C-C bonds would start to break and then formed much bigger rings to make materials weaker until fracture.


Optical properties

The earliest numerical results on the optical properties of graphene nanoribbons were obtained by Lin and Shyu in 2000. The different
selection rules In physics and chemistry, a selection rule, or transition rule, formally constrains the possible transitions of a system from one quantum state to another. Selection rules have been derived for electromagnetic transitions in molecules, in atoms, ...
for optical transitions in graphene nanoribbons with armchair and zigzag edges were reported. These results were supplemented by a comparative study of zigzag nanoribbons with single wall armchair
carbon nanotubes A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon nan ...
by Hsu and Reichl in 2007. It was demonstrated that selection rules in zigzag ribbons are different from those in carbon nanotube and the eigenstates in zigzag ribbons can be classified as either symmetric or antisymmetric. Also, it was predicted that edge states should play an important role in the optical absorption of zigzag nanoribbons. Optical transitions between the edge and bulk states should enrich the low-energy region (<3 eV) of the absorption spectrum by strong absorption peaks. Analytical derivation of the numerically obtained selection rules was presented in 2011,. The selection rule for the incident light polarized longitudinally to the zigzag ribbon axis is that \Delta J = J_2 - J_1 is odd, where J_ and J_ number the energy bands, while for the perpendicular polarization \Delta J = J_2 - J_1 is even. Intraband (intersubband) transitions between the conduction (valence) sub-bands are also allowed if \Delta J = J_2 - J_1 is even. For graphene nanoribbons with armchair edges the selection rule is \Delta J = J_2 - J_1 = 0. Similar to tubes transitions intersubband transitions are forbidden for armchair graphene nanoribbons. Despite different selection rules in single wall armchair carbon nanotubes and zigzag graphene nanoribbons a hidden correlation of the absorption peaks is predicted. The correlation of the absorption peaks in tubes and ribbons should take place when the number of atoms in the tube unit cell N_t is related to the number of atoms in the zigzag ribbon unit cell N_r as follows: N_t = 2 N_r + 4, which is so-called matching condition for the periodic and hard wall boundary conditions. These results obtained within the nearest-neighbor approximation of the tight-binding model have been corroborated with first principles density functional theory calculations taking into account exchange and correlation effects. First-principle calculations with quasiparticle corrections and many-body effects explored the electronic and optical properties of graphene-based materials. With GW calculation, the properties of graphene-based materials are accurately investigated, including graphene nanoribbons, edge and surface functionalized armchair graphene nanoribbons and scaling properties in armchair graphene nanoribbons.


Analyses

Graphene nanoribbons can be analyzed by scanning tunneling microscope, Raman spectroscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy. For example, out-of-plane bending vibration of one C-H on one benzene ring, called SOLO, which is similar to zigzag edge, on zigzag GNRs has been reported to appear at 899 cm−1, whereas that of two C-H on one benzene ring, called DUO, which is similar to armchair edge, on armchair GNRs has been reported to appear at 814 cm−1 as results of calculated IR spectra. However, analyses of graphene nanoribbon on substrates are difficult using infrared spectroscopy even with a Reflection Absorption Spectrometry method. Thus, a large quantity of graphene nanoribbon is necessary for infrared spectroscopy analyses.


Reactivity

Zigzag edges are known to be more reactive than armchair edges, as observed in the dehydrogenation reactivities between the compound with zigzag edges (tetracene) and armchair edges (chrysene). Also, zigzag edges tends to be more oxidized than armchair edges without gasification. The zigzag edges with longer length can be more reactive as it can be seen from the dependence of the length of acenes on the reactivity.


Applications


Polymeric nanocomposites

Graphene nanoribbons and their oxidized counterparts called graphene oxide nanoribbons have been investigated as nano-fillers to improve the mechanical properties of polymeric nanocomposites. Increases in the mechanical properties of epoxy composites on loading of graphene nanoribbons were observed. An increase in the mechanical properties of biodegradable polymeric nanocomposites of poly(propylene fumarate) at low weight percentage was achieved by loading of oxidized graphene nanoribbons, fabricated for bone tissue engineering applications.


Contrast agent for bioimaging

Hybrid imaging modalities, such as photoacoustic (PA) tomography (PAT) and thermoacoustic (TA) tomography (TAT) have been developed for bioimaging applications. PAT/TAT combines advantages of pure
ultrasound Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies ...
and pure optical imaging/
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the uppe ...
(RF), providing good spatial resolution, great penetration depth and high soft-tissue contrast. GNR synthesized by unzipping single- and multi-walled
carbon nanotubes A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon nan ...
have been reported as contrast agents for photoacoustic and thermoacoustic imaging and
tomography Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, astrophysics, quantu ...
.Full Text PDF


See also

*
Graphene oxide paper Graphene oxide paper or graphite oxide paper is a material fabricated from graphite oxide. Micrometer thick films of graphene oxide paper are also named as graphite oxide membranes (in the 1960s) or (more recently) graphene oxide membranes. The mem ...
* Katsunori Wakabayashi *
Silicene Silicene is a two-dimensional allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene. Contrary to graphene, silicene is not flat, but has a periodically buckled topology; the coupling between layers in silicene is ...
, which can also form nanoribbons * Graphene electronics * Graphene helix


References

{{nanotech footer


External links


WOLFRAM Demonstrations Project: Electronic Band Structure of Armchair and Zigzag Graphene Nanoribbons

Graphene nanoribbons on arxiv.org
Graphene