Gordon M. Shepherd
   HOME

TheInfoList



OR:

Gordon Murray Shepherd (21 July 1933 – 9 June 2022) was an American
neuroscientist A neuroscientist (or neurobiologist) is a scientist who has specialised knowledge in neuroscience, a branch of biology that deals with the physiology, biochemistry, psychology, anatomy and molecular biology of neurons, Biological neural network, n ...
who carried out basic experimental and computational research on how neurons are organized into
microcircuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny M ...
s to carry out the functional operations of the nervous system. Using the olfactory system as a model that spans multiple levels of space, time and disciplines, his studies have ranged from molecular to behavioral, recognized by an annual lecture at Yale University on "integrative neuroscience". At the time of his death, he was professor of neuroscience emeritus at the
Yale School of Medicine The Yale School of Medicine is the graduate medical school at Yale University, a private research university in New Haven, Connecticut. It was founded in 1810 as the Medical Institution of Yale College and formally opened in 1813. The primary te ...
. He graduated from
Iowa State University Iowa State University of Science and Technology (Iowa State University, Iowa State, or ISU) is a public land-grant research university in Ames, Iowa. Founded in 1858 as the Iowa Agricultural College and Model Farm, Iowa State became one of the n ...
with a BA,
Harvard Medical School Harvard Medical School (HMS) is the graduate medical school of Harvard University and is located in the Longwood Medical Area of Boston, Massachusetts. Founded in 1782, HMS is one of the oldest medical schools in the United States and is consi ...
with a MD, and the
University of Oxford , mottoeng = The Lord is my light , established = , endowment = £6.1 billion (including colleges) (2019) , budget = £2.145 billion (2019–20) , chancellor ...
with a DPhill.


Early work

His graduate studies in 1963 of the electrophysiology of the
olfactory bulb The olfactory bulb (Latin: ''bulbus olfactorius'') is a grey matter, neural structure of the vertebrate forebrain involved in olfaction, the sense of odor, smell. It sends olfactory information to be further processed in the amygdala, the orbitof ...
produced one of the first diagrams of a brain microcircuit. Building on this work he collaborated with Wilfrid Rall, just then founding the new field of computational neuroscience, at NIH to construct the first computational models of brain neurons: the mitral and granule cell. This predicted previously unknown dendrodendritic interactions between the mitral and granule cells, subsequently confirmed by electronmicroscopy. These interactions were hypothesized to mediate lateral inhibition in the processing of the sensory input as well as generate oscillatory activity involved in odor processing. The model suggested active properties in the dendrites, which was subsequently confirmed, through which the model accounts for non-topographic interactions throughout the olfactory bulb. This paper was included in the "Essays on APS Classic Papers" series: "But probably the tour de force of Rall’s works (and perhaps of computational neuroscience in general) is the 1968 paper of Rall and Shepherd in the Journal of Neurophysiology. Unlike most other Rall studies that provided a conceptual framework, this one is different because it really dived into the guts of a specific system, the olfactory bulb." The next problem addressed was how odors are represented in the brain. A collaboration in 1975, using new methods of
brain imaging Neuroimaging is the use of quantitative (computational) techniques to study the neuroanatomy, structure and function of the central nervous system, developed as an objective way of scientifically studying the healthy human brain in a non-invasive ...
, revealed for the first time that odors are encoded by different spatial activity patterns in the olfactory glomeruli of the olfactory bulb. This showed that the neural basis of smell in vertebrates involves odor representation by glomerular activity patterns ("odor images") which are then processed by the widely distributed olfactory bulb microcircuits. Among the odor-induced patterns was a focus on a "modified glomerular complex", the first of a subsystem of "necklace glomeruli" in the main olfactory bulb that receives specific input from olfactory receptors that respond to odor stimuli through a cyclic GMP second messenger system. Shepherd's lab has used the olfactory bulb as a general model for the integrative actions of neuronal dendrites. This showed that dendrites can contain multiple computational units; backpropagating action potentials in dendrites carry out specific functional operations; and dendritic spines can function as semi-independent input-output units. The lab also provided a basic circuit for olfactory cortex. New concepts to replace the classical "neuron doctrine" were hypothesized, and the term "microcircuit" was introduced for characterizing specific patterns of synaptic interactions in the nervous system.


Recent and Current Studies

Shepherd's odor imaging studies were extended by use of high-field functional MRI (7 and 9 Tesla), work started with his longtime colleague Charles Greer and members of the Yale Imaging Center. The lab has introduced viral tracing methods to reveal widely dispersed clusters of granule cells which are hypothesized to be necessary for processing the distributed glomeruli activated by odor stimuli. These experimental data were used to build novel 3D computational models of the distributed mitral and granule cell circuits, to obtain insight into the nature of the processing that underlies smell perception. What are the sensory "primitives" that are processed as the basis of smell perception? This fundamental problem was attacked by modeling the molecular interactions between odor molecules and the new discovered olfactory receptors. "Determinants" were identified on the odor molecules that activate specific sites on the receptors to encode the identity of the odor molecule. A new appreciation of the human sense of smell suggested a new focus on retronasal smell, which activates an extensive "flavor system" in the human brain; this led in 2015 to a new field of " neurogastronomy", based on his book of that name which has among its goals enhancing understanding of the factors contributing to clinical conditions and global health. A new society and annual meeting have been formed by Shepherd, Dan Han, Frédéric Morin,
Charles Spence Charles Spence is an experimental psychology, experimental psychologist at the University of Oxford. He is the head of the Crossmodal Research group which specializes in the research about the integration of information across different sensory m ...
, Tim McClintock, Bob Perry, Jehangir Mehta, Kelsey Rahenkamp, Siddharth Kapoor, Ouita Michel, and Bret Smith, called the International Society of Neurogastronomy (ISN). ISN is sponsored by the
National Institute on Deafness and Other Communication Disorders The National Institute on Deafness and Other Communication Disorders (NIDCD), a member of the U.S. National Institutes of Health, is mandated to conduct and support biomedical and behavioral research and research training in the normal and disor ...
/
National Institutes of Health The National Institutes of Health, commonly referred to as NIH (with each letter pronounced individually), is the primary agency of the United States government responsible for biomedical and public health research. It was founded in the late ...
. The same principles have been applied to wine tasting in Neuroenology These principles are illustrated by animation for Neurogastronomy and Neuroenology. The olfactory bulb projects to the olfactory cortex which projects to the neocortex where smell perception occurs. Early studies with Lewis Haberly of olfactory cortex led to a basic circuit of pyramidal cells with feedback and lateral excitation and inhibition as the basis for higher olfactory processing. Current studies with paleontologist Timothy Rowe suggest that during evolution this basic three layer microcircuit combined with reptilian dorsal cortex to form the neocortex. His lab was among the original group that founded the field of
neuroinformatics Neuroinformatics is the field that combines informatics and neuroscience. Neuroinformatics is related with neuroscience data and information processing by artificial neural networks. There are three main directions where neuroinformatics has to be ...
, with the first funding of the
Human Brain Project The Human Brain Project (HBP) is a large ten-year scientific research project, based on exascale supercomputers, that aims to build a collaborative ICT-based scientific research infrastructure to allow researchers across Europe to advance knowl ...
in 1993. The home site is "SenseLab", which contains a suite of 9 databases supporting research on olfactory receptors, odor maps, neuronal and dendritic properties, and neuronal and microcircuit models. SenseLab was founded by Shepherd, Perry Miller, founder of the Yale Center for Medical Informatics, and Michael Hines, founder of the widely used modeling program NEURON.


Partial bibliography

* Shepherd, G.M. (1974). ''The Synaptic Organization of the Brain''. New York: Oxford University Press. * Shepherd, G.M. (1983). ''Neurobiology''. New York: Oxford University Press. * Shepherd, G.M. (1991). ''Foundations of the Neuron Doctrine''. New York: Oxford University Press. * Segev, I., Rinzel, J. and Shepherd, G.M. (Eds.). (1995). ''The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall''. Cambridge, Mass.: MIT Press * Shepherd, G.M. (2010)
''Creating Modern Neuroscience: The Revolutionary 1950s''
New York: Oxford University Press * Shepherd, G.M. and Grillner, S. (Eds.) (2010). ''Handbook of Brain Microcircuits''. New York: Oxford University Press *Shepherd, G.M. (2011). ''Neurogastronomy: How the Brain Creates Flavor and Why It Matters''. New York: Columbia University Press *Shepherd, G.M. (2016). ''Neuroenology: How the Brain Creates the Taste of Wine''. New York: Columbia University Press


Honors

*Honorary degree, University of Copenhagen, 1999 *Honorary degree,
University of Pavia The University of Pavia ( it, Università degli Studi di Pavia, UNIPV or ''Università di Pavia''; la, Alma Ticinensis Universitas) is a university located in Pavia, Lombardy, Italy. There was evidence of teaching as early as 1361, making it one ...
, 2006 *ISN Award of Excellence, the International Society of Neurogastronomy, 2015


References

{{DEFAULTSORT:Shepherd, Gordon M. 1933 births 2022 deaths American neuroscientists Yale School of Medicine faculty 20th-century American scientists 21st-century American scientists Place of birth missing Iowa State University alumni Harvard Medical School alumni Alumni of the University of Oxford