Gluons
   HOME

TheInfoList



OR:

A gluon ( ) is an
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
that acts as the exchange particle (or gauge boson) for the
strong force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
between
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s. It is analogous to the exchange of
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s in the
electromagnetic force In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of ...
between two
charged particle In physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary pa ...
s. Gluons bind quarks together, forming
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
s such as
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s. Gluons are
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
gauge bosons that mediate
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
s of
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s in
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
(QCD). Gluons themselves carry the
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). The "color charge" of quarks and gluons is completely unrelated to the everyday meanings of colo ...
of the strong interaction. This is unlike the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
, which mediates the
electromagnetic interaction In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of ...
but lacks an electric charge. Gluons therefore participate in the strong interaction in addition to mediating it, making QCD significantly harder to analyze than
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
(QED).


Properties

The gluon is a
vector boson In particle physics, a vector boson is a boson whose spin equals one. The vector bosons that are regarded as elementary particles in the Standard Model are the gauge bosons, the force carriers of fundamental interactions: the photon of electromag ...
, which means, like the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
, it has a spin of 1. While massive spin-1 particles have three polarization states, massless gauge bosons like the gluon have only two polarization states because
gauge invariance In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie group ...
requires the polarization to be transverse to the direction that the gluon is traveling. In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
, unbroken gauge invariance requires that gauge bosons have zero mass. Experiments limit the gluon's rest mass (if any) to less than a few MeV/''c''2. The gluon has negative intrinsic parity.


Counting gluons

Unlike the single
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
of QED or the three
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and ...
of the
weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, ...
, there are eight independent types of gluon in QCD. However, gluons are subject to the
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). The "color charge" of quarks and gluons is completely unrelated to the everyday meanings of colo ...
phenomena (of which they have combinations of color and anticolor).
Quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s carry three types of color charge; antiquarks carry three types of anticolor. Gluons may be thought of as carrying both color and anticolor. This gives nine ''possible'' combinations of color and anticolor in gluons. The following is a list of those combinations (and their schematic names): * red–antired red–antigreen red–antiblue * green–antired green–antigreen green–antiblue * blue–antired blue–antigreen blue–antiblue These are not the ''actual'' color states of observed gluons, but rather ''effective'' states. To correctly understand how they are combined, it is necessary to consider the mathematics of color charge in more detail.


Color singlet states

It is often said that the stable strongly interacting particles (such as the proton and the neutron, i.e.
hadrons In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
) observed in nature are "colorless", but more precisely they are in a "color singlet" state, which is mathematically analogous to a ''spin'' singlet state. Such states allow interaction with other color singlets, but not with other color states; because long-range gluon interactions do not exist, this illustrates that gluons in the singlet state do not exist either. The color singlet state is: :(r\bar+b\bar+g\bar)/\sqrt. In other words, if one could
measure Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Mea ...
the color of the state, there would be equal probabilities of it being red–antired, blue–antiblue, or green–antigreen.


Eight colors

There are eight remaining independent color states, which correspond to the "eight types" or "eight colors" of gluons. Because states can be mixed together as discussed above, there are many ways of presenting these states, which are known as the "color octet". One commonly used list is: These are equivalent to the
Gell-Mann matrices The Gell-Mann matrices, developed by Murray Gell-Mann, are a set of eight linearly independent 3×3 traceless Hermitian matrices used in the study of the strong interaction in particle physics. They span the Lie algebra of the SU(3) group in t ...
. The critical feature of these particular eight states is that they are
linearly independent In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are ...
, and also independent of the singlet state, hence 32 − 1 or 23. There is no way to add any combination of these states to produce any other, and it is also impossible to add them to make r, g, or b the forbidden
singlet state In quantum mechanics, a singlet state usually refers to a system in which all electrons are paired. The term 'singlet' originally meant a linked set of particles whose net angular momentum is zero, that is, whose overall spin quantum number s=0. A ...
. There are many other possible choices, but all are mathematically equivalent, at least equally complicated, and give the same physical results.


Group theory details

Technically, QCD is a gauge theory with
SU(3) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the specia ...
gauge symmetry. Quarks are introduced as
spinor In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a sligh ...
s in ''N''f
flavor Flavor or flavour is either the sensory perception of taste or smell, or a flavoring in food that produces such perception. Flavor or flavour may also refer to: Science *Flavors (programming language), an early object-oriented extension to Lis ...
s, each in the
fundamental representation In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible representation, irreducible finite-dimensional representation of a semisimple Lie algebra, semisimple Lie group or Lie algebra whose highest weig ...
(triplet, denoted 3) of the color gauge group, SU(3). The gluons are vectors in the
adjoint representation In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if ''G'' is G ...
(octets, denoted 8) of color SU(3). For a general
gauge group In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie group ...
, the number of force-carriers (like photons or gluons) is always equal to the dimension of the adjoint representation. For the simple case of SU(''N''), the dimension of this representation is . In terms of group theory, the assertion that there are no color singlet gluons is simply the statement that
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
has an SU(3) rather than a U(3) symmetry. There is no known ''a priori'' reason for one group to be preferred over the other, but as discussed above, the experimental evidence supports SU(3). If the group were U(3), the ninth (colorless singlet) gluon would behave like a "second photon" and not like the other eight gluons.


Confinement

Since gluons themselves carry color charge, they participate in strong interactions. These gluon–gluon interactions constrain color fields to string-like objects called "
flux tube A flux tube is a generally tube-like (cylindrical) region of space containing a magnetic field, B, such that the cylindrical sides of the tube are everywhere parallel to the magnetic field lines. It is a graphical visual aid for visualizing a mag ...
s", which exert constant force when stretched. Due to this force,
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s are confined within composite particles called
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
s. This effectively limits the range of the strong interaction to meters, roughly the size of a nucleon. Beyond a certain distance, the energy of the flux tube binding two quarks increases linearly. At a large enough distance, it becomes energetically more favorable to pull a quark–antiquark pair out of the vacuum rather than increase the length of the flux tube. Gluons also share this property of being confined within hadrons. One consequence is that gluons are not directly involved in the nuclear forces between hadrons. The force mediators for these are other hadrons called mesons. Although in the normal phase of QCD single gluons may not travel freely, it is predicted that there exist hadrons that are formed entirely of gluons — called glueballs. There are also conjectures about other exotic hadrons in which real gluons (as opposed to virtual particle, virtual ones found in ordinary hadrons) would be primary constituents. Beyond the normal phase of QCD (at extreme temperatures and pressures), quark–gluon plasma forms. In such a plasma there are no hadrons; quarks and gluons become free particles.


Experimental observations

Quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s and gluons (colored) manifest themselves by fragmenting into more quarks and gluons, which in turn hadronize into normal (colorless) particles, correlated in jets. As revealed in 1978 summer conferences, the PLUTO detector at the electron-positron collider DORIS (DESY) produced the first evidence that the hadronic decays of the very narrow resonance Υ(9.46) could be interpreted as three-jet event topologies produced by three gluons. Later, published analyses by the same experiment confirmed this interpretation and also the spin = 1 nature of the gluon (see also the recollection and PLUTO experiments). In summer 1979, at higher energies at the electron-positron collider PETRA (DESY), again three-jet topologies were observed, now interpreted as q gluon bremsstrahlung, now clearly visible, by TASSO, MARK-J and PLUTO experiments (later in 1980 also by JADE (particle detector), JADE). The spin = 1 property of the gluon was confirmed in 1980 by TASSO and PLUTO experiments (see also the review). In 1991 a subsequent experiment at the LEP storage ring at CERN again confirmed this result. The gluons play an important role in the elementary strong interactions between
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s and gluons, described by QCD and studied particularly at the electron-proton collider HERA at DESY. The number and momentum distribution of the gluons in the
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
(gluon density) have been measured by two experiments, H1 (particle detector), H1 and ZEUS, in the years 1996–2007. The gluon contribution to the proton spin has been studied by the HERMES experiment at HERA. The gluon density in the proton (when behaving hadronically) also has been measured. Color confinement is verified by the failure of free quark searches (searches of fractional charges). Quarks are normally produced in pairs (quark + antiquark) to compensate the quantum color and flavor numbers; however at Fermilab single production of top quarks has been shown. No glueball has been demonstrated. Deconfinement was claimed in 2000 at CERN SPS in heavy-ion collisions, and it implies a new state of matter: quark–gluon plasma, less interactive than in the Atomic nucleus, nucleus, almost as in a liquid. It was found at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven in the years 2004–2010 by four contemporaneous experiments. A quark–gluon plasma state has been confirmed at the CERN Large Hadron Collider (LHC) by the three experiments A Large Ion Collider Experiment, ALICE, ATLAS experiment, ATLAS and Compact Muon Solenoid, CMS in 2010. Jefferson Lab's Continuous Electron Beam Accelerator Facility, in Newport News, Virginia, is one of 10 United States Department of Energy, Department of Energy facilities doing research on gluons. The Virginia lab was competing with another facility – Brookhaven National Laboratory, on Long Island, New York – for funds to build a new electron-ion collider. In December 2019 the US Department of Energy selected the Brookhaven National Laboratory to host the electron-ion collider.


See also

*
Quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
*Hadron *Meson *Gauge boson *Quark model *Quantum chromodynamics *Quark–gluon plasma *Color confinement *Glueball *Gluon field *Gluon field strength tensor *Exotic hadrons *Standard Model *Three-jet event *Deep inelastic scattering *Quantum chromodynamics binding energy *Special unitary group *Hadronization *Color charge *Coupling constant


Footnotes


References


Further reading

*
Cambridge Handout 8 : Quantum Chromodynamics - Particle Physics


External resources


Big Think website, clear explanation of the QCD Octet
{{Authority control Bosons Elementary particles Gauge bosons Gluons Quantum chromodynamics Force carriers Subatomic particles with spin 1