HOME

TheInfoList



OR:

A genetic operator is an operator used in genetic algorithms to guide the algorithm towards a solution to a given problem. There are three main types of operators (
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
,
crossover Crossover may refer to: Entertainment Albums and songs * ''Cross Over'' (Dan Peek album) * ''Crossover'' (Dirty Rotten Imbeciles album), 1987 * ''Crossover'' (Intrigue album) * ''Crossover'' (Hitomi Shimatani album) * ''Crossover'' (Yoshino ...
and selection), which must work in conjunction with one another in order for the algorithm to be successful. Genetic operators are used to create and maintain
genetic diversity Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species and can be attributed to the span of survival for a species. It is dis ...
(mutation operator), combine existing solutions (also known as
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
s) into new solutions (crossover) and select between solutions (selection). In his book discussing the use of genetic programming for the optimization of complex problems, computer scientist John Koza has also identified an 'inversion' or 'permutation' operator; however, the effectiveness of this operator has never been conclusively demonstrated and this operator is rarely discussed. Mutation (or mutation-like) operators are said to be '' unary'' operators, as they only operate on one chromosome at a time. In contrast, crossover operators are said to be '' binary'' operators, as they operate on two chromosomes at a time, combining two existing chromosomes into one new chromosome.


Operators

Genetic variation is a necessity for the process of
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
. Genetic operators used in genetic algorithms are analogous to those in the natural world:
survival of the fittest "Survival of the fittest" is a phrase that originated from Darwinian evolutionary theory as a way of describing the mechanism of natural selection. The biological concept of fitness is defined as reproductive success. In Darwinian terms, ...
, or selection; reproduction (
crossover Crossover may refer to: Entertainment Albums and songs * ''Cross Over'' (Dan Peek album) * ''Crossover'' (Dirty Rotten Imbeciles album), 1987 * ''Crossover'' (Intrigue album) * ''Crossover'' (Hitomi Shimatani album) * ''Crossover'' (Yoshino ...
, also called recombination); and
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
.


Selection

Selection operators give preference to better solutions (chromosomes), allowing them to pass on their 'genes' to the next generation of the algorithm. The best solutions are determined using some form of
objective function In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost ...
(also known as a '
fitness function {{no footnotes, date=May 2015 A fitness function is a particular type of objective function that is used to summarise, as a single figure of merit, how close a given design solution is to achieving the set aims. Fitness functions are used in geneti ...
' in genetic algorithms), before being passed to the crossover operator. Different methods for choosing the best solutions exist, for example, fitness proportionate selection and
tournament selection Tournament selection is a method of selecting an individual from a population of individuals in a genetic algorithm. Tournament selection involves running several "tournaments" among a few individuals (or " chromosomes") chosen at random from the po ...
; different methods may choose different solutions as being 'best'. The selection operator may also simply pass the best solutions from the current generation directly to the next generation without being mutated; this is known as ''elitism'' or ''elitist selection''.


Crossover

Crossover is the process of taking more than one parent solutions (chromosomes) and producing a child solution from them. By recombining portions of good solutions, the genetic algorithm is more likely to create a better solution. As with selection, there are a number of different methods for combining the parent solutions, including the ''edge recombination operator'' (ERO) and the 'cut and splice crossover' and 'uniform crossover' methods. The crossover method is often chosen to closely match the chromosome's representation of the solution; this may become particularly important when variables are grouped together as building blocks, which might be disrupted by a non-respectful crossover operator. Similarly, crossover methods may be particularly suited to certain problems; the ERO is generally considered a good option for solving the travelling salesman problem.


Mutation

The mutation operator encourages genetic diversity amongst solutions and attempts to prevent the genetic algorithm converging to a
local minimum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
by stopping the solutions becoming too close to one another. In mutating the current pool of solutions, a given solution may change entirely from the previous solution. By mutating the solutions, a genetic algorithm can reach an improved solution solely through the mutation operator. Again, different methods of mutation may be used; these range from a simple ''bit mutation'' (flipping random bits in a binary string chromosome with some low probability) to more complex mutation methods, which may replace genes in the solution with random values chosen from the
uniform distribution Uniform distribution may refer to: * Continuous uniform distribution * Discrete uniform distribution * Uniform distribution (ecology) * Equidistributed sequence See also * * Homogeneous distribution In mathematics, a homogeneous distribution ...
or the
Gaussian distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
. As with the crossover operator, the mutation method is usually chosen to match the representation of the solution within the chromosome.


Combining operators

While each operator acts to improve the solutions produced by the genetic algorithm working individually, the operators must work in conjunction with each other for the algorithm to be successful in finding a good solution. Using the selection operator on its own will tend to fill the solution population with copies of the best solution from the population. If the selection and crossover operators are used without the mutation operator, the algorithm will tend to converge to a
local minimum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
, that is, a good but sub-optimal solution to the problem. Using the mutation operator on its own leads to a
random walk In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z ...
through the search space. Only by using all three operators together can the genetic algorithm become a noise-tolerant hill-climbing algorithm, yielding good solutions to the problem.


References

{{DEFAULTSORT:Genetic Operator Genetic algorithms