HOME

TheInfoList



OR:

In computational biology, gene prediction or gene finding refers to the process of identifying the regions of genomic DNA that encode genes. This includes protein-coding
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s as well as RNA genes, but may also include prediction of other functional elements such as
regulatory regions A regulatory sequence is a segment of a nucleic acid molecule which is capable of increasing or decreasing the expression of specific genes within an organism. Regulation of gene expression is an essential feature of all living organisms and vir ...
. Gene finding is one of the first and most important steps in understanding the genome of a species once it has been
sequenced In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which suc ...
. In its earliest days, "gene finding" was based on painstaking experimentation on living cells and organisms. Statistical analysis of the rates of
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
of several different genes could determine their order on a certain
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are ...
, and information from many such experiments could be combined to create a genetic map specifying the rough location of known genes relative to each other. Today, with comprehensive genome sequence and powerful computational resources at the disposal of the research community, gene finding has been redefined as a largely computational problem. Determining that a sequence is functional should be distinguished from determining the function of the gene or its product. Predicting the function of a gene and confirming that the gene prediction is accurate still demands ''
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and ...
'' experimentation through gene knockout and other assays, although frontiers of bioinformatics research are making it increasingly possible to predict the function of a gene based on its sequence alone. Gene prediction is one of the key steps in genome annotation, following
sequence assembly In bioinformatics, sequence assembly refers to aligning and merging fragments from a longer DNA sequence in order to reconstruct the original sequence. This is needed as DNA sequencing technology might not be able to 'read' whole genomes in one ...
, the filtering of non-coding regions and repeat masking. Gene prediction is closely related to the so-called 'target search problem' investigating how
DNA-binding proteins DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for DNA#Base pairing, single- or double-stranded DNA. Sequence-specific DNA-binding proteins generally interact with the major groove ...
(
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fun ...
) locate specific
binding sites In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. The binding partner of the macromolecule is often referred to as a ligand. Ligands may includ ...
within the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding g ...
. Many aspects of structural gene prediction are based on current understanding of underlying biochemical processes in the
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
such as gene transcription,
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
,
protein–protein interaction Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and th ...
s and regulation processes, which are subject of active research in the various
omics The branches of science known informally as omics are various disciplines in biology whose names end in the suffix '' -omics'', such as genomics, proteomics, metabolomics, metagenomics, phenomics and transcriptomics. Omics aims at the collect ...
fields such as
transcriptomics Transcriptomics technologies are the techniques used to study an organism's transcriptome, the sum of all of its RNA transcripts. The information content of an organism is recorded in the DNA of its genome and expressed through transcription. H ...
, proteomics,
metabolomics Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprin ...
, and more generally
structural A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such ...
and
functional genomics Functional genomics is a field of molecular biology that attempts to describe gene (and protein) functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects (such as genome sequencing ...
.


Empirical methods

In empirical (similarity, homology or evidence-based) gene finding systems, the target genome is searched for sequences that are similar to extrinsic evidence in the form of the known expressed sequence tags, messenger RNA (mRNA),
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
products, and homologous or orthologous sequences. Given an mRNA sequence, it is trivial to derive a unique genomic DNA sequence from which it had to have been transcribed. Given a protein sequence, a family of possible coding DNA sequences can be derived by reverse translation of the
genetic code The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
. Once candidate DNA sequences have been determined, it is a relatively straightforward algorithmic problem to efficiently search a target genome for matches, complete or partial, and exact or inexact. Given a sequence, local alignment algorithms such as
BLAST Blast or The Blast may refer to: *Explosion, a rapid increase in volume and release of energy in an extreme manner *Detonation, an exothermic front accelerating through a medium that eventually drives a shock front Film * ''Blast'' (1997 film), ...
,
FASTA FASTA is a DNA and protein sequence alignment software package first described by David J. Lipman and William R. Pearson in 1985. Its legacy is the FASTA format which is now ubiquitous in bioinformatics. History The original FASTA program ...
and Smith-Waterman look for regions of similarity between the target sequence and possible candidate matches. Matches can be complete or partial, and exact or inexact. The success of this approach is limited by the contents and accuracy of the sequence database. A high degree of similarity to a known messenger RNA or protein product is strong evidence that a region of a target genome is a protein-coding gene. However, to apply this approach systemically requires extensive sequencing of mRNA and protein products. Not only is this expensive, but in complex organisms, only a subset of all genes in the organism's genome are expressed at any given time, meaning that extrinsic evidence for many genes is not readily accessible in any single cell culture. Thus, to collect extrinsic evidence for most or all of the genes in a complex organism requires the study of many hundreds or thousands of cell types, which presents further difficulties. For example, some human genes may be expressed only during development as an embryo or fetus, which might be difficult to study for ethical reasons. Despite these difficulties, extensive transcript and protein sequence databases have been generated for human as well as other important model organisms in biology, such as mice and yeast. For example, the
RefSeq The Reference Sequence (RefSeq) database is an open access, annotated and curated collection of publicly available nucleotide sequences ( DNA, RNA) and their protein products. RefSeq was first introduced in 2000. This database is built by National ...
database contains transcript and protein sequence from many different species, and the
Ensembl Ensembl genome database project is a scientific project at the European Bioinformatics Institute, which provides a centralized resource for geneticists, molecular biologists and other researchers studying the genomes of our own species and other v ...
system comprehensively maps this evidence to human and several other genomes. It is, however, likely that these databases are both incomplete and contain small but significant amounts of erroneous data. New high-throughput
transcriptome The transcriptome is the set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. The term can also sometimes be used to refer to all RNAs, or just mRNA, depending on the particular experiment. The t ...
sequencing technologies such as RNA-Seq and
ChIP-sequencing ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated prot ...
open opportunities for incorporating additional extrinsic evidence into gene prediction and validation, and allow structurally rich and more accurate alternative to previous methods of measuring gene expression such as
expressed sequence tag In genetics, an expressed sequence tag (EST) is a short sub-sequence of a cDNA sequence. ESTs may be used to identify gene transcripts, and were instrumental in gene discovery and in gene-sequence determination. The identification of ESTs has proc ...
or DNA microarray. Major challenges involved in gene prediction involve dealing with sequencing errors in raw DNA data, dependence on the quality of the
sequence assembly In bioinformatics, sequence assembly refers to aligning and merging fragments from a longer DNA sequence in order to reconstruct the original sequence. This is needed as DNA sequencing technology might not be able to 'read' whole genomes in one ...
, handling short reads, frameshift mutations, overlapping genes and incomplete genes. In prokaryotes it's essential to consider
horizontal gene transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). H ...
when searching for gene sequence homology. An additional important factor underused in current gene detection tools is existence of gene clusters —
operon In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splic ...
s (which are functioning units of DNA containing a cluster of
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s under the control of a single promoter) in both prokaryotes and eukaryotes. Most popular gene detectors treat each gene in isolation, independent of others, which is not biologically accurate.


''Ab initio'' methods

Ab Initio gene prediction is an intrinsic method based on gene content and signal detection. Because of the inherent expense and difficulty in obtaining extrinsic evidence for many genes, it is also necessary to resort to ''
ab initio ''Ab initio'' ( ) is a Latin term meaning "from the beginning" and is derived from the Latin ''ab'' ("from") + ''initio'', ablative singular of ''initium'' ("beginning"). Etymology Circa 1600, from Latin, literally "from the beginning", from ab ...
'' gene finding, in which the genomic DNA sequence alone is systematically searched for certain tell-tale signs of protein-coding genes. These signs can be broadly categorized as either ''signals'', specific sequences that indicate the presence of a gene nearby, or ''content'', statistical properties of the protein-coding sequence itself. ''Ab initio'' gene finding might be more accurately characterized as gene ''prediction'', since extrinsic evidence is generally required to conclusively establish that a putative gene is functional. In the genomes of prokaryotes, genes have specific and relatively well-understood promoter sequences (signals), such as the
Pribnow box The Pribnow box (also known as the Pribnow-Schaller box) is a sequence of ''TATAAT'' of six nucleotides (thymine, adenine, thymine, etc.) that is an essential part of a promoter site on DNA for transcription to occur in bacteria. It is an idea ...
and
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The f ...
binding site In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. The binding partner of the macromolecule is often referred to as a ligand. Ligands may includ ...
s, which are easy to systematically identify. Also, the sequence coding for a protein occurs as one contiguous
open reading frame In molecular biology, open reading frames (ORFs) are defined as spans of DNA sequence between the start and stop codons. Usually, this is considered within a studied region of a prokaryotic DNA sequence, where only one of the six possible readin ...
(ORF), which is typically many hundred or thousands of base pairs long. The statistics of
stop codon In molecular biology (specifically protein biosynthesis), a stop codon (or termination codon) is a codon (nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in mess ...
s are such that even finding an open reading frame of this length is a fairly informative sign. (Since 3 of the 64 possible codons in the genetic code are stop codons, one would expect a stop codon approximately every 20–25 codons, or 60–75 base pairs, in a random sequence.) Furthermore, protein-coding DNA has certain periodicities and other statistical properties that are easy to detect in a sequence of this length. These characteristics make prokaryotic gene finding relatively straightforward, and well-designed systems are able to achieve high levels of accuracy. ''Ab initio'' gene finding in eukaryotes, especially complex organisms like humans, is considerably more challenging for several reasons. First, the promoter and other regulatory signals in these genomes are more complex and less well-understood than in prokaryotes, making them more difficult to reliably recognize. Two classic examples of signals identified by eukaryotic gene finders are CpG islands and binding sites for a
poly(A) tail Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In eu ...
. Second, splicing mechanisms employed by eukaryotic cells mean that a particular protein-coding sequence in the genome is divided into several parts ( exons), separated by non-coding sequences (
introns An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene ...
). (Splice sites are themselves another signal that eukaryotic gene finders are often designed to identify.) A typical protein-coding gene in humans might be divided into a dozen exons, each less than two hundred base pairs in length, and some as short as twenty to thirty. It is therefore much more difficult to detect periodicities and other known content properties of protein-coding DNA in eukaryotes. Advanced gene finders for both prokaryotic and eukaryotic genomes typically use complex
probabilistic model A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, ...
s, such as
hidden Markov model A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process — call it X — with unobservable ("''hidden''") states. As part of the definition, HMM requires that there be an o ...
s (HMMs) to combine information from a variety of different signal and content measurements. The GLIMMER system is a widely used and highly accurate gene finder for prokaryotes. GeneMark is another popular approach. Eukaryotic ''ab initio'' gene finders, by comparison, have achieved only limited success; notable examples are the
GENSCAN In bioinformatics, GENSCAN is a program to identify complete gene structures in genomic DNA. It is a G HMM-based program that can be used to predict the location of genes and their exon-intron boundaries in genomic sequences from a variety of org ...
and geneid programs. The SNAP gene finder is HMM-based like Genscan, and attempts to be more adaptable to different organisms, addressing problems related to using a gene finder on a genome sequence that it was not trained against. A few recent approaches like mSplicer, CONTRAST, or mGene also use
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
techniques like support vector machines for successful gene prediction. They build a discriminative model using hidden Markov support vector machines or
conditional random field Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without consid ...
s to learn an accurate gene prediction scoring function. ''Ab Initio'' methods have been benchmarked, with some approaching 100% sensitivity, however as the sensitivity increases, accuracy suffers as a result of increased false positives.


Other signals

Among the derived signals used for prediction are statistics resulting from the sub-sequence statistics like
k-mer In bioinformatics, ''k''-mers are substrings of length k contained within a biological sequence. Primarily used within the context of computational genomics and sequence analysis, in which ''k''-mers are composed of nucleotides (''i.e''. A, T, G ...
statistics,
Isochore (genetics) In genetics, an isochore is a large region of genomic DNA (greater than 300 kilobases) with a high degree of uniformity in GC content; that is, guanine (G) and cytosine (C) bases. The distribution of bases within a genome is non-random: different re ...
or
Compositional domain A compositional domain in genetics is a region of DNA with a distinct guanine (G) and cytosine (C) G-C and C-G content (collectively GC content). The homogeneity of compositional domains is compared to that of the chromosome on which they reside ...
GC composition/uniformity/entropy, sequence and frame length, Intron/Exon/Donor/Acceptor/Promoter and
Ribosomal binding site A ribosome binding site, or ribosomal binding site (RBS), is a sequence of nucleotides upstream of the start codon of an mRNA transcript that is responsible for the recruitment of a ribosome during the initiation of translation. Mostly, RBS refers t ...
vocabulary,
Fractal dimension In mathematics, more specifically in fractal geometry, a fractal dimension is a ratio providing a statistical index of complexity comparing how detail in a pattern (strictly speaking, a fractal pattern) changes with the scale at which it is me ...
, Fourier transform of a pseudo-number-coded DNA, Z-curve parameters and certain run features. It has been suggested that signals other than those directly detectable in sequences may improve gene prediction. For example, the role of secondary structure in the identification of regulatory motifs has been reported. In addition, it has been suggested that RNA secondary structure prediction helps splice site prediction.


Neural networks

Artificial neural networks are computational models that excel at
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
and
pattern recognition Pattern recognition is the automated recognition of patterns and regularities in data. It has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics ...
. Neural networks must be trained with example data before being able to generalise for experimental data, and tested against benchmark data. Neural networks are able to come up with approximate solutions to problems that are hard to solve algorithmically, provided there is sufficient training data. When applied to gene prediction, neural networks can be used alongside other ''ab initio'' methods to predict or identify biological features such as splice sites. One approach involves using a sliding window, which traverses the sequence data in an overlapping manner. The output at each position is a score based on whether the network thinks the window contains a donor splice site or an acceptor splice site. Larger windows offer more accuracy but also require more computational power. A neural network is an example of a signal sensor as its goal is to identify a functional site in the genome.


Combined approaches

Programs such as Maker combine extrinsic and ''ab initio'' approaches by mapping protein and EST data to the genome to validate ''ab initio'' predictions. Augustus, which may be used as part of the Maker pipeline, can also incorporate hints in the form of EST alignments or protein profiles to increase the accuracy of the gene prediction.


Comparative genomics approaches

As the entire genomes of many different species are sequenced, a promising direction in current research on gene finding is a comparative genomics approach. This is based on the principle that the forces of
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Cha ...
cause genes and other functional elements to undergo mutation at a slower rate than the rest of the genome, since mutations in functional elements are more likely to negatively impact the organism than mutations elsewhere. Genes can thus be detected by comparing the genomes of related species to detect this evolutionary pressure for conservation. This approach was first applied to the mouse and human genomes, using programs such as SLAM, SGP and TWINSCAN/N-SCAN and CONTRAST.


Multiple informants

TWINSCAN examined only human-mouse synteny to look for orthologous genes. Programs such as N-SCAN and CONTRAST allowed the incorporation of alignments from multiple organisms, or in the case of N-SCAN, a single alternate organism from the target. The use of multiple informants can lead to significant improvements in accuracy. CONTRAST is composed of two elements. The first is a smaller classifier, identifying donor splice sites and acceptor splice sites as well as start and stop codons. The second element involves constructing a full model using machine learning. Breaking the problem into two means that smaller targeted data sets can be used to train the classifiers, and that classifier can operate independently and be trained with smaller windows. The full model can use the independent classifier, and not have to waste computational time or model complexity re-classifying intron-exon boundaries. The paper in which CONTRAST is introduced proposes that their method (and those of TWINSCAN, etc.) be classified as ''de novo'' gene assembly, using alternate genomes, and identifying it as distinct from ''ab initio'', which uses a target 'informant' genomes. Comparative gene finding can also be used to project high quality annotations from one genome to another. Notable examples include Projector, GeneWise, GeneMapper and GeMoMa. Such techniques now play a central role in the annotation of all genomes.


Pseudogene prediction

Pseudogenes Pseudogenes are nonfunctional segments of DNA that resemble functional genes. Most arise as superfluous copies of functional genes, either directly by DNA duplication or indirectly by reverse transcription of an mRNA transcript. Pseudogenes are ...
are close relatives of genes, sharing very high sequence homology, but being unable to code for the same
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
product. Whilst once relegated as byproducts of gene sequencing, increasingly, as regulatory roles are being uncovered, they are becoming predictive targets in their own right. Pseudogene prediction utilises existing sequence similarity and ab initio methods, whilst adding additional filtering and methods of identifying pseudogene characteristics. Sequence similarity methods can be customised for pseudogene prediction using additional filtering to find candidate pseudogenes. This could use disablement detection, which looks for nonsense or frameshift mutations that would truncate or collapse an otherwise functional coding sequence. Additionally, translating DNA into proteins sequences can be more effective than just straight DNA homology. Content sensors can be filtered according to the differences in statistical properties between pseudogenes and genes, such as a reduced count of CpG islands in pseudogenes, or the differences in G-C content between pseudogenes and their neighbours. Signal sensors also can be honed to pseudogenes, looking for the absence of introns or polyadenine tails.


Metagenomic gene prediction

Metagenomics Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a method called sequencing. The broad field may also be referred to as environmental genomics, ecogenomics, community genomics or microb ...
is the study of genetic material recovered from the environment, resulting in sequence information from a pool of organisms. Predicting genes is useful for comparative metagenomics. Metagenomics tools also fall into the basic categories of using either sequence similarity approaches (MEGAN4) and ab initio techniques (GLIMMER-MG). Glimmer-MG is an extension to GLIMMER that relies mostly on an ab initio approach for gene finding and by using training sets from related organisms. The prediction strategy is augmented by classification and clustering gene data sets prior to applying ab initio gene prediction methods. The data is clustered by species. This classification method leverages techniques from metagenomic phylogenetic classification. An example of software for this purpose is, Phymm, which uses interpolated markov models—and PhymmBL, which integrates BLAST into the classification routines. MEGAN4 uses a sequence similarity approach, using local alignment against databases of known sequences, but also attempts to classify using additional information on functional roles, biological pathways and enzymes. As in single organism gene prediction, sequence similarity approaches are limited by the size of the database. FragGeneScan and MetaGeneAnnotator are popular gene prediction programs based on
Hidden Markov model A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process — call it X — with unobservable ("''hidden''") states. As part of the definition, HMM requires that there be an o ...
. These predictors account for sequencing errors, partial genes and work for short reads. Another fast and accurate tool for gene prediction in metagenomes is MetaGeneMark. This tool is used by the DOE Joint Genome Institute to annotate IMG/M, the largest metagenome collection to date.


See also

* List of gene prediction software * Phylogenetic footprinting * Protein function prediction *
Protein structure prediction Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its secondary and tertiary structure from primary structure. Structure prediction is different ...
* Protein–protein interaction prediction * Pseudogene (database) * Sequence mining * Sequence similarity (homology)


References


External links


Augustus

FGENESH

GeMoMa
- Homology-based gene prediction based on amino acid and intron position conservation as well as RNA-Seq data
geneidSGP2

Glimmer

GlimmerHMM

GenomeThreader



GeneMark

Gismo

mGene

StarORF
— A multi-platform and web tool for predicting ORFs and obtaining reverse complement sequence

- A portable and easily configurable genome annotation pipeline {{DEFAULTSORT:Gene Prediction Bioinformatics Mathematical and theoretical biology Markov models