HOME

TheInfoList



OR:

A gene drive is a natural process and technology of
genetic engineering Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including ...
that propagates a particular suite of genes throughout a population by altering the probability that a specific allele will be transmitted to offspring (instead of the Mendelian 50% probability). Gene drives can arise through a variety of mechanisms. They have been proposed to provide an effective means of genetically modifying specific populations and entire species. The technique can employ adding, deleting, disrupting, or modifying genes. Proposed applications include exterminating insects that carry pathogens (notably mosquitoes that transmit
malaria Malaria is a mosquito-borne infectious disease that affects humans and other animals. Malaria causes symptoms that typically include fever, tiredness, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. ...
,
dengue Dengue fever is a mosquito-borne tropical disease caused by the dengue virus. Symptoms typically begin three to fourteen days after infection. These may include a high fever, headache, vomiting, muscle and joint pains, and a characteristic ...
, and
zika Zika fever, also known as Zika virus disease or simply Zika, is an infectious disease caused by the Zika virus. Most cases have no symptoms, but when present they are usually mild and can resemble dengue fever. Symptoms may include fever, red ...
pathogens), controlling
invasive species An invasive species otherwise known as an alien is an introduced organism that becomes overpopulated and harms its new environment. Although most introduced species are neutral or beneficial with respect to other species, invasive species adv ...
, or eliminating
herbicide Herbicides (, ), also commonly known as weedkillers, are substances used to control undesired plants, also known as weeds.EPA. February 201Pesticides Industry. Sales and Usage 2006 and 2007: Market Estimates. Summary in press releasMain page f ...
or
pesticide resistance Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens su ...
. As with any potentially powerful technique, gene drives can be misused in a variety of ways or induce
unintended consequences In the social sciences, unintended consequences (sometimes unanticipated consequences or unforeseen consequences) are outcomes of a purposeful action that are not intended or foreseen. The term was popularised in the twentieth century by Ameri ...
. For example, a gene drive intended to affect only a local population might spread across an entire species. Gene drives that eradicate populations of invasive species in their non-native habitats may have consequences for the population of the species as a whole, even in its native habitat. Any accidental return of individuals of the species to its original habitats, through natural migration, environmental disruption (storms, floods, etc.), accidental human transportation, or purposeful relocation, could unintentionally drive the species to extinction if the relocated individuals carried harmful gene drives. Gene drives can be built from many naturally occurring selfish genetic elements that use a variety of molecular mechanisms. These naturally occurring mechanisms induce similar
segregation distortion Intragenomic conflict refers to the evolutionary phenomenon where genes have phenotypic effects that promote their own transmission in detriment of the transmission of other genes that reside in the same genome. The selfish gene theory postulates ...
in the wild, arising when
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chrom ...
s evolve molecular mechanisms that give them a transmission chance greater than the normal 50%. Most gene drives have been developed in insects, notably mosquitoes, as a way to control insect-borne pathogens. Recent developments designed gene drives directly in viruses, notably herpesviruses. These viral gene drives can propagate a modification into the population of viruses, and aim to reduce the infectivity of the virus.


Mechanism

In sexually-reproducing species, most genes are present in two copies (which can be the same or different
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chrom ...
s), either one of which has a 50% chance of passing to a descendant. By biasing the inheritance of particular altered genes, synthetic gene drives could spread alterations through a population.


Molecular mechanisms

At the molecular level, an endonuclease gene drive works by cutting a
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
at a specific site that does not encode the drive, inducing the cell to repair the damage by copying the drive sequence onto the damaged chromosome. The cell then has two copies of the drive sequence. The method derives from
genome editing Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts ...
techniques and relies on the fact that double strand breaks are most frequently repaired by
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
, (in the presence of a template), rather than
non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology direc ...
. To achieve this behavior, endonuclease gene drives consist of two nested elements: * either a
homing endonuclease The homing endonucleases are a collection of endonucleases encoded either as freestanding genes within introns, as fusions with host proteins, or as self-splicing inteins. They catalyze the hydrolysis of genomic DNA within the cells that synthes ...
or a RNA-guided endonuclease (e.g.,
Cas9 Cas9 (CRISPR associated protein 9, formerly called Cas5, Csn1, or Csx12) is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in gene ...
or Cas12a) and its
guide RNA A guide RNA (gRNA) is a piece of RNA that functions as a guide for RNA- or DNA-targeting enzymes, with which it forms complexes. Very often these enzymes will delete, insert or otherwise alter the targeted RNA or DNA. They occur naturally, ser ...
, that cuts the target sequence in recipient cells * a template sequence used by the DNA repair machinery after the target sequence is cut. To achieve the self-propagating nature of gene drives, this repair template contains at least the endonuclease sequence. Because the template must be used to repair a
double-strand break DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA dam ...
at the cutting site, its sides are homologous to the sequences that are adjacent to the cutting site in the host genome. By targeting the gene drive to a gene coding sequence, this gene will be inactivated; additional sequences can be introduced in the gene drive to encode new functions. As a result, the gene drive insertion in the genome will re-occur in each organism that inherits one copy of the modification and one copy of the wild-type gene. If the gene drive is already present in the egg cell (e.g. when received from one parent), all the gametes of the individual will carry the gene drive (instead of 50% in the case of a normal gene).


Spreading in the population

Since it can never more than double in frequency with each generation, a gene drive introduced in a single individual typically requires dozens of generations to affect a substantial fraction of a population. Alternatively, releasing drive-containing organisms in sufficient numbers can affect the rest within a few generations; for instance, by introducing it in every thousandth individual, it takes only 12–15 generations to be present in all individuals. Whether a gene drive will ultimately become fixed in a population and at which speed depends on its effect on individual fitness, on the rate of allele conversion, and on the population structure. In a well mixed population and with realistic allele conversion frequencies (≈90%), population genetics predicts that gene drives get fixed for a selection coefficient smaller than 0.3; in other words, gene drives can be used to spread modifications as long as reproductive success is not reduced by more than 30%. This is in contrast with normal genes, which can only spread across large populations if they increase fitness.


Gene drive in viruses

Because the strategy usually relies on the simultaneous presence of an unmodified and a gene drive allele in the same
cell nucleus The cell nucleus (pl. nuclei; from Latin or , meaning ''kernel'' or ''seed'') is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, h ...
, it had generally been assumed that a gene drive could only be engineered in sexually reproducing organisms, excluding
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
and
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es. However, during a
viral infection A viral disease (or viral infection) occurs when an organism's body is invaded by pathogenic viruses, and infectious virus particles (virions) attach to and enter susceptible cells. Structural Characteristics Basic structural characteristics, ...
, viruses can accumulate hundreds or thousands of genome copies in infected cells. Cells are frequently co-infected by multiple virions and recombination between viral genomes is a well-known and widespread source of diversity for many viruses. In particular, herpesviruses are nuclear-replicating
DNA virus A DNA virus is a virus that has a genome made of deoxyribonucleic acid (DNA) that is replicated by a DNA polymerase. They can be divided between those that have two strands of DNA in their genome, called double-stranded DNA (dsDNA) viruses, and ...
es with large double-stranded DNA genomes and frequently undergo homologous recombination during their replication cycle. These properties have enabled the design of a gene drive strategy that doesn't involve sexual reproduction, instead relying on
co-infection Coinfection is the simultaneous infection of a host by multiple pathogen species. In virology, coinfection includes simultaneous infection of a single cell by two or more virus particles. An example is the coinfection of liver cells with hepatiti ...
of a given cell by a naturally occurring and an engineered virus. Upon co-infection, the unmodified genome is cut and repaired by homologous recombination, producing new gene drive viruses that can progressively replace the naturally occurring population. In
cell culture Cell culture or tissue culture is the process by which cells are grown under controlled conditions, generally outside of their natural environment. The term "tissue culture" was coined by American pathologist Montrose Thomas Burrows. This tec ...
experiments, it was shown that a viral gene drive can spread into the viral population and strongly reduce the infectivity of the virus, which opens novel therapeutic strategies against herpesviruses.


Technical limitations

Because gene drives propagate by replacing other alleles that contain a cutting site and the corresponding homologies, their application has been mostly limited to sexually reproducing species (because they are
diploid Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectiv ...
or
polyploid Polyploidy is a condition in which the cells of an organism have more than one pair of ( homologous) chromosomes. Most species whose cells have nuclei ( eukaryotes) are diploid, meaning they have two sets of chromosomes, where each set conta ...
and alleles are mixed at each generation). As a side effect, inbreeding could in principle be an escape mechanism, but the extent to which this can happen in practice is difficult to evaluate. Due to the number of generations required for a gene drive to affect an entire population, the time to universality varies according to the reproductive cycle of each species: it may require under a year for some invertebrates, but centuries for organisms with years-long intervals between birth and
sexual maturity Sexual maturity is the capability of an organism to reproduce. In humans it might be considered synonymous with adulthood, but here puberty is the name for the process of biological sexual maturation, while adulthood is based on cultural definit ...
, such as humans. Hence this technology is of most use in fast-reproducing species. Effectiveness in real practice varies between techniques, especially by choice of
germline In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They ...
promoter. Lin and Potter 2016 (a) discloses the promoter technology homology assisted CRISPR knockin (HACK) and Lin and Potter 2016 (b) demonstrates actual use, achieving a high proportion of altered progeny from each altered ''
Drosophila ''Drosophila'' () is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or (less frequently) pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many speci ...
'' mother.


Issues

Issues highlighted by researchers include: * Mutations: A mutation could happen mid-drive, which has the potential to allow unwanted traits to "ride along". * Escape: Cross-breeding or
gene flow In population genetics, gene flow (also known as gene migration or geneflow and allele flow) is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent a ...
potentially allow a drive to move beyond its target population. * Ecological impacts: Even when new traits' direct impact on a target is understood, the drive may have side effects on the surroundings. The
Broad Institute The Eli and Edythe L. Broad Institute of MIT and Harvard (IPA: , pronunciation respelling: ), often referred to as the Broad Institute, is a biomedical and genomic research center located in Cambridge, Massachusetts, United States. The insti ...
of MIT and Harvard added gene drives to a list of uses of gene-editing technology it doesn't think companies should pursue.


Bioethics concerns

Gene drives affect all future generations and represent the possibility of a larger change in a living species than has been possible before. In December 2015, scientists of major world academies called for a moratorium on inheritable
human genome The human genome is a complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as the ...
edits that would affect the germline, including those related to
CRISPR-Cas9 Cas9 (CRISPR associated protein 9, formerly called Cas5, Csn1, or Csx12) is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in genetic ...
technologies, but supported continued basic research and gene editing that would not affect future generations. In February 2016, British scientists were given permission by regulators to genetically modify
human embryos An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm c ...
by using CRISPR-Cas9 and related techniques on condition that the embryos were destroyed in seven days. In June 2016, the US
National Academies of Sciences, Engineering, and Medicine The National Academies of Sciences, Engineering, and Medicine (also known as NASEM or the National Academies) are the collective scientific national academy of the United States. The name is used interchangeably in two senses: (1) as an umbrell ...
released a report on their "Recommendations for Responsible Conduct" of gene drives. Models suggest that extinction-oriented gene drives will wipe out target species and that drives could reach populations beyond the target given minimal connectivity between them.
Kevin M. Esvelt Kevin Michael Esvelt is an American biologist. He is currently an assistant professor at the MIT Media Lab and leads the Sculpting Evolution group. After receiving a B.A. in chemistry and biology from Harvey Mudd College, he completed his PhD wor ...
stated that an open conversation was needed around the safety of gene drives: "In our view, it is wise to assume that invasive and self-propagating gene drive systems are likely to spread to every population of the target species throughout the world. Accordingly, they should only be built to combat true plagues such as malaria, for which we have few adequate countermeasures and that offer a realistic path towards an international agreement to deploy among all affected nations.". He moved to an open model for his own research on using gene drives to eradicate
Lyme disease Lyme disease, also known as Lyme borreliosis, is a vector-borne disease caused by the '' Borrelia'' bacterium, which is spread by ticks in the genus '' Ixodes''. The most common sign of infection is an expanding red rash, known as erythema ...
in
Nantucket Nantucket () is an island about south from Cape Cod. Together with the small islands of Tuckernuck and Muskeget, it constitutes the Town and County of Nantucket, a combined county/town government that is part of the U.S. state of Massachuse ...
and
Martha's Vineyard Martha's Vineyard, often simply called the Vineyard, is an island in the Northeastern United States, located south of Cape Cod in Dukes County, Massachusetts, known for being a popular, affluent summer colony. Martha's Vineyard includes the ...
. Esvelt and colleagues suggested that CRISPR could be used to save endangered wildlife from extinction. Esvelt later retracted his support for the idea, except for extremely hazardous populations such as malaria-carrying mosquitoes, and isolated islands that would prevent the drive from spreading beyond the target area.


History

Austin Burt, an evolutionary geneticist at
Imperial College London Imperial College London (legally Imperial College of Science, Technology and Medicine) is a public research university in London, United Kingdom. Its history began with Prince Albert, consort of Queen Victoria, who developed his vision for a cu ...
, introduced the possibility of conducting gene drives based on natural homing endonuclease selfish genetic elements in 2003. Researchers had already shown that such genes could act selfishly to spread rapidly over successive generations. Burt suggested that gene drives might be used to prevent a mosquito population from transmitting the
malaria parasite ''Plasmodium'' is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of ''Plasmodium'' species involve development in a blood-feeding insect host which then injects parasites into a verteb ...
or to crash a mosquito population. Gene drives based on homing endonucleases have been demonstrated in the laboratory in
transgenic A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the ...
populations of mosquitoes and fruit flies. However, homing endonucleases are sequence-specific. Altering their specificity to target other sequences of interest remains a major challenge. The possible applications of gene drive remained limited until the discovery of CRISPR and associated RNA-guided endonucleases such as
Cas9 Cas9 (CRISPR associated protein 9, formerly called Cas5, Csn1, or Csx12) is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in gene ...
and Cas12a. In June 2014, the
World Health Organization The World Health Organization (WHO) is a specialized agency of the United Nations responsible for international public health. The WHO Constitution states its main objective as "the attainment by all peoples of the highest possible level o ...
(WHO) Special Programme for Research and Training in Tropical Diseases issued guidelines for evaluating genetically modified mosquitoes. In 2013 the
European Food Safety Authority The European Food Safety Authority (EFSA) is the agency of the European Union (EU) that provides independent scientific advice and communicates on existing and emerging risks associated with the food chain. EFSA was established in February 2002, ...
issued a protocol for
environmental assessment Environmental Impact assessment (EIA) is the assessment of the environmental impact, environmental consequences of a plan, policy, program, or actual projects prior to the decision to move forward with the proposed action. In this context, the te ...
s of all
genetically modified organisms A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with ...
.


Funding

Target Malaria, a project funded by the
Bill and Melinda Gates Foundation The Bill & Melinda Gates Foundation (BMGF), a merging of the William H. Gates Foundation and the Gates Learning Foundation, is an American private foundation founded by Bill Gates and Melinda French Gates. Based in Seattle, Washington, it was l ...
, invested $75 million in gene drive technology. The foundation originally estimated the technology to be ready for field use by 2029 somewhere in Africa. However, in 2016 Gates changed this estimate to some time within the following two years. In December 2017, documents released under the
Freedom of Information Act Freedom of Information Act may refer to the following legislations in different jurisdictions which mandate the national government to disclose certain data to the general public upon request: * Freedom of Information Act 1982, the Australian act * ...
showed that
DARPA The Defense Advanced Research Projects Agency (DARPA) is a research and development agency of the United States Department of Defense responsible for the development of emerging technologies for use by the military. Originally known as the A ...
had invested $100 million in gene drive research.


Control strategies

Scientists have designed multiple strategies to maintain control over gene drives. In 2020, researchers reported the development of two active
guide RNA A guide RNA (gRNA) is a piece of RNA that functions as a guide for RNA- or DNA-targeting enzymes, with which it forms complexes. Very often these enzymes will delete, insert or otherwise alter the targeted RNA or DNA. They occur naturally, ser ...
-only elements that, according to their study, may enable halting or deleting gene drives introduced into populations in the wild with
CRISPR-Cas9 gene editing CRISPR gene editing (pronounced "crisper") is a genetic engineering technique in molecular biology by which the genomes of living organisms may be modified. It is based on a simplified version of the bacterial CRISPR-Cas9 antiviral defense s ...
. The paper's senior author cautions that the two neutralizing systems they demonstrated in cage trials "should not be used with a false sense of security for field-implemented gene drives". If elimination is not necessary, it may be desirable to intentionally preserve the target population at a lower level by using a less severe gene drive technology. This works by maintaining the semi-defective population indefinitely in the target area, thereby crowding out potential nearby, wild populations that would otherwise move back in to fill a void.


CRISPR

CRISPR CRISPR () (an acronym for clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. These sequences are derived from DNA fragments of bact ...
is the leading
genetic engineering Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including ...
method. In 2014, Esvelt and coworkers first suggested that CRISPR/Cas9 might be used to build gene drives. In 2015, researchers reported successful engineering of CRISPR-based gene drives in ''
Saccharomyces ''Saccharomyces'' is a genus of fungi that includes many species of yeasts. ''Saccharomyces'' is from Greek σάκχαρον (sugar) and μύκης (fungus) and means ''sugar fungus''. Many members of this genus are considered very important in f ...
'''','' ''
Drosophila ''Drosophila'' () is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or (less frequently) pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many speci ...
'', and
mosquito Mosquitoes (or mosquitos) are members of a group of almost 3,600 species of small flies within the family Culicidae (from the Latin ''culex'' meaning " gnat"). The word "mosquito" (formed by ''mosca'' and diminutive ''-ito'') is Spanish for "li ...
es. They reported efficient inheritance distortion over successive generations, with one study demonstrating the spread of a gene into laboratory populations. Drive-resistant alleles were expected to arise for each of the described gene drives; however, this could be delayed or prevented by targeting highly conserved sites at which resistance was expected to have a severe fitness cost. Because of CRISPR's targeting flexibility, gene drives could theoretically be used to engineer almost any trait. Unlike previous approaches, they could be tailored to block the evolution of drive resistance by targeting multiple sequences. CRISPR could also enable gene drive architectures that control rather than eliminate populations. In 2022, t-CRISPR, was used to pass the “t haplotype” gene to about 95% of offspring. The approach spreads faulty copies of a female fertility gene to offspring, rendering them infertile. The researchers reported that their models suggested that adding 256 altered animals to an island with a population of 200,000 mice would eliminate the population in about 25 years. The traditional approaches of poison and traps were not needed.


Applications

Gene drives have two main classes of application, which have implications of different significance: * introduce a genetic modification in laboratory populations; once a strain or a line carrying the gene drive has been produced, the drive can be passed to any other line by mating. Here, the gene drive is used to much more easily achieve a task that could be accomplished with other techniques. * introduce a genetic modification in wild populations. Gene drives constitute a major development that makes possible previously unattainable changes. Because of their unprecedented potential risk, safeguard mechanisms have been proposed and tested.


Disease vector species

One possible application is to genetically modify
mosquito Mosquitoes (or mosquitos) are members of a group of almost 3,600 species of small flies within the family Culicidae (from the Latin ''culex'' meaning " gnat"). The word "mosquito" (formed by ''mosca'' and diminutive ''-ito'') is Spanish for "li ...
es,
mice A mouse ( : mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus'' ...
, and other disease vectors so that they cannot transmit diseases, such as
malaria Malaria is a mosquito-borne infectious disease that affects humans and other animals. Malaria causes symptoms that typically include fever, tiredness, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. ...
and
dengue fever Dengue fever is a mosquito-borne tropical disease caused by the dengue virus. Symptoms typically begin three to fourteen days after infection. These may include a high fever, headache, vomiting, muscle and joint pains, and a characteristic ...
in the case of mosquitoes, and tick-borne disease in the case of mice. Researchers have claimed that by applying the technique to 1% of the wild population of mosquitoes, that they could eradicate malaria within a year.


Invasive species control

A gene drive could be used to eliminate
invasive species An invasive species otherwise known as an alien is an introduced organism that becomes overpopulated and harms its new environment. Although most introduced species are neutral or beneficial with respect to other species, invasive species adv ...
and has, for example, been proposed as a way to eliminate invasive species in New Zealand. Gene drives for biodiversity conservation purposes are being explored as part of The Genetic Biocontrol of Invasive Rodents (GBIRd) program because they offer the potential for reduced risk to non-target species and reduced costs when compared to traditional invasive species removal techniques. Given the risks of such an approach described below, the GBIRd partnership is committed to a deliberate, step-wise process that will only proceed with public alignment, as recommended by the world's leading gene drive researchers from the Australian and US National Academy of Sciences and many others. A wider outreach network for gene drive research exists to raise awareness of the value of gene drive research for the public good. Some scientists are concerned about the technique, fearing it could spread and wipe out species in native habitats. The gene could mutate, potentially causing unforeseen problems (as could any gene). Many non-native species can hybridize with native species, such that a gene drive afflicting a non-native plant or animal that hybridizes with a native species could doom the native species. Many non-native species have naturalized into their new environment so well that crops and/or native species have adapted to depend on them.


Predator Free 2050

The Predator Free 2050 project is a New Zealand government program to eliminate eight invasive mammalian predator species (including rats, short-tailed weasels, and possums) from the country by 2050. The project was first announced in 2016 by New Zealand's prime minister
John Key Sir John Phillip Key (born 9 August 1961) is a New Zealand retired politician who served as the 38th Prime Minister of New Zealand from 2008 to 2016 and as Leader of the New Zealand National Party from 2006 to 2016. After resigning from bo ...
and in January 2017 it was announced that gene drives would be considered in the effort, but this has not yet been actualised. In 2017, one group in Australia and another in Texas released preliminary research into creating 'daughterless mice' using gene drives in mammals.


California

In 2017, scientists at the University of California, Riverside developed a gene drive to attack the invasive spotted-wing drosophila, a type of fruit fly native to Asia that is costing California's cherry farms $700 million per year because of its tail's razor-edged
ovipositor The ovipositor is a tube-like organ used by some animals, especially insects, for the laying of eggs. In insects, an ovipositor consists of a maximum of three pairs of appendages. The details and morphology of the ovipositor vary, but typical ...
that destroys unblemished fruit. The primary alternative control strategy involves the use of
insecticide Insecticides are substances used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed t ...
s called
pyrethroid A pyrethroid is an organic compound similar to the natural pyrethrins, which are produced by the flowers of pyrethrums ('' Chrysanthemum cinerariaefolium'' and '' C. coccineum''). Pyrethroids are used as commercial and household insecticides. ...
s that kill almost all insects that it contacts.


Wild animal welfare

The transhumanist philosopher David Pearce has advocated for using CRISPR-based gene drives to reduce the
suffering of wild animals Wild animal suffering is the suffering experienced by nonhuman animals living outside of direct human control, due to harms such as disease, injury, parasitism, starvation and malnutrition, dehydration, weather conditions, natural disasters, an ...
.
Kevin M. Esvelt Kevin Michael Esvelt is an American biologist. He is currently an assistant professor at the MIT Media Lab and leads the Sculpting Evolution group. After receiving a B.A. in chemistry and biology from Harvey Mudd College, he completed his PhD wor ...
, an American biologist who has helped develop gene drive technology, has argued that there is a moral case for the elimination of the New World screwworm through such technologies because of the immense suffering that infested wild animals experience when they are eaten alive.


See also

* Biological machines *
Cas9 Cas9 (CRISPR associated protein 9, formerly called Cas5, Csn1, or Csx12) is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in gene ...
* Cas12a *
Meiotic drive Meiotic drive is a type of intragenomic conflict, whereby one or more loci within a genome will effect a manipulation of the meiotic process in such a way as to favor the transmission of one or more alleles over another, regardless of its phenoty ...
*
Genome editing Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts ...
*
Population control Population control is the practice of artificially maintaining the size of any population. It simply refers to the act of limiting the size of an animal population so that it remains manageable, as opposed to the act of protecting a species from ...
*
Sterile insect technique The sterile insect technique (SIT) is a method of biological insect control, whereby overwhelming numbers of sterile insects are released into the wild. The released insects are preferably male, as this is more cost-effective and the females ma ...
*
Synthetic biology Synthetic biology (SynBio) is a multidisciplinary area of research that seeks to create new biological parts, devices, and systems, or to redesign systems that are already found in nature. It is a branch of science that encompasses a broad ran ...
* Target Malaria


References


Further reading

* * * * * * * * *


External links


The Outreach Network for Gene Drive Research website

The Genetic Biocontrol of Invasive Rodents (GBIRd) program website
* {{cite web , title=Gene Drive from Harvard's Wyss Institute , publisher=Wyss Institute , date=2014-07-17 , access-date=2014-08-11, url=https://www.youtube.com/watch?v=Cy69C6vnFCQ/ Genetic engineering Genetics techniques Genome editing Sterilization (medicine)