HOME

TheInfoList



OR:

A Geiger counter (also known as a Geiger–Müller counter) is an electronic instrument used for detecting and measuring
ionizing radiation Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel ...
. It is widely used in applications such as radiation dosimetry, radiological protection,
experimental physics Experimental physics is the category of disciplines and sub-disciplines in the field of physics that are concerned with the observation of physical phenomena and experiments. Methods vary from discipline to discipline, from simple experiments and ...
, nuclear industry and the Manumouthry. It detects ionizing radiation such as
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be prod ...
s, beta particles, and
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s using the ionization effect produced in a
Geiger–Müller tube The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated ...
, which gives its name to the instrument. In wide and prominent use as a hand-held radiation survey instrument, it is perhaps one of the world's best-known radiation detection instruments. The original detection principle was realized in 1908 at the
University of Manchester The University of Manchester is a public university, public research university in Manchester, England. The main campus is south of Manchester city centre, Manchester City Centre on Wilmslow Road, Oxford Road. The university owns and operates majo ...
, but it was not until the development of the Geiger–Müller tube in 1928 that the Geiger counter could be produced as a practical instrument. Since then, it has been very popular due to its robust sensing element and relatively low cost. However, there are limitations in measuring high radiation rates and the
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
of incident radiation.


Principle of operation

A Geiger counter consists of a Geiger–Müller tube (the sensing element which detects the radiation) and the processing electronics, which displays the result. The Geiger–Müller tube is filled with an inert gas such as
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
, neon, or
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice a ...
at low pressure, to which a high voltage is applied. The tube briefly conducts electrical charge when a
particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
or
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
of incident radiation makes the gas conductive by ionization. The ionization is considerably amplified within the tube by the Townsend discharge effect to produce an easily measured detection pulse, which is fed to the processing and display electronics. This large pulse from the tube makes the Geiger counter relatively cheap to manufacture, as the subsequent electronics are greatly simplified. The electronics also generate the high voltage, typically 400–900 volts, that has to be applied to the Geiger–Müller tube to enable its operation. This voltage must be carefully selected, as too high a voltage will allow for continuous discharge, damaging the instrument and invalidating the results. Conversely, too low a voltage will result in an electric field that is too weak to generate a current pulse. The correct voltage is usually specified by the manufacturer. To stop the discharge in the Geiger–Müller tube a small amount of halogen gas or organic material (alcohol) is added to the gas mixture.


Readout

There are two types of detected radiation readout:
counts Count (feminine: countess) is a historical title of nobility in certain European countries, varying in relative status, generally of middling rank in the hierarchy of nobility. Pine, L. G. ''Titles: How the King Became His Majesty''. New York ...
and
radiation dose Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel ...
. * The counts display is the simplest, and shows the number of ionizing events detected: displayed either as a count rate, such as "counts per minute" or "counts per second", or as a total number of counts over a set time period (an integrated total). The counts readout is normally used when alpha or beta particles are being detected. * More complex to achieve is a display of radiation dose rate, displayed in units such as the sievert, which is normally used for measuring gamma or X-ray dose rates. A Geiger–Müller tube can detect the presence of radiation, but not its
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
, which influences the radiation's ionizing effect. Consequently, instruments measuring dose rate require the use of an energy compensated Geiger–Müller tube, so that the dose displayed relates to the counts detected.Glenn F Knoll. ''Radiation Detection and Measurement'', third edition 2000. John Wiley and Sons, The electronics will apply known factors to make this conversion, which is specific to each instrument and is determined by design and calibration. The readout can be analog or digital, and modern instruments offer serial communications with a host computer or network. There is usually an option to produce audible clicks representing the number of ionization events detected. This is the distinctive sound associated with handheld or portable Geiger counters. The purpose of this is to allow the user to concentrate on manipulation of the instrument while retaining auditory feedback on the radiation rate.


Limitations

There are two main limitations of the Geiger counter: # Because the output pulse from a Geiger–Müller tube is always of the same magnitude (regardless of the energy of the incident radiation), the tube cannot differentiate between radiation types. # The tube is less accurate at high radiation rates, because each ionization event is followed by a "dead time", an insensitive period during which any further incident radiation does not result in a count. Typically, the dead time will reduce indicated count rates above about 104 to 105 counts per second, depending on the characteristic of the tube being used. While some counters have circuitry which can compensate for this, for accurate measurements ion chamber instruments are preferred for high radiation rates.


Types and applications

The intended detection application of a Geiger counter dictates the tube design used. Consequently, there are a great many designs, but they can be generally categorized as "end-window", windowless "thin-walled", "thick-walled", and sometimes hybrids of these types.


Particle detection

The first historical uses of the Geiger principle were to detect α- and β-particles, and the instrument is still used for this purpose today. For α-particles and low energy β-particles, the "end-window" type of a Geiger–Müller tube has to be used, as these particles have a limited range and are easily stopped by a solid material. Therefore, the tube requires a window which is thin enough to allow as many as possible of these particles through to the fill gas. The window is usually made of
mica Micas ( ) are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into extremely thin elastic plates. This characteristic is described as perfect basal cleavage. Mica is ...
with a density of about 1.5–2.0 mg/cm2. α-particles have the shortest range, and to detect these the window should ideally be within 10 mm of the radiation source due to α-particle
attenuation In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at var ...
. However, the Geiger–Müller tube produces a pulse output which is the same magnitude for all detected radiation, so a Geiger counter with an end window tube cannot distinguish between α- and β-particles. A skilled operator can use varying distance from a radiation source to differentiate between α- and high energy β-particles. The "pancake" Geiger–Müller tube is a variant of the end-window probe, but designed with a larger detection area to make checking quicker. However, the pressure of the atmosphere against the low pressure of the fill gas limits the window size due to the limited strength of the window membrane. Some β-particles can also be detected by a thin-walled "windowless" Geiger–Müller tube, which has no end-window, but allows high energy β-particles to pass through the tube walls. Although the tube walls have a greater stopping power than a thin end-window, they still allow these more energetic particles to reach the fill gas. End-window Geiger counters are still used as a general purpose, portable, radioactive contamination measurement and detection instrument, owing to their relatively low cost, robustness and relatively high detection efficiency; particularly with high energy β-particles. However, for discrimination between α- and β-particles or provision of particle energy information, scintillation counters or proportional counters should be used. Those instrument types are manufactured with much larger detector areas, which means that checking for surface contamination is quicker than with a Geiger counter.


Gamma and X-ray detection

Geiger counters are widely used to detect
gamma radiation A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically s ...
and
X-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10 nanometers, corresponding to frequencies in the range 30&nbs ...
collectively known as
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
, and for this the windowless tube is used. However, detection efficiency is low compared to alpha and beta particles. The article on the
Geiger–Müller tube The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated ...
carries a more detailed account of the techniques used to detect photon radiation. For high energy photons the tube relies on the interaction of the radiation with the tube wall, usually a high Z material such as
chrome steel Chrome steel is one of a class of non stainless steels such as AISI 52100, En31, SUJ2, 100Cr6, 100C6, DIN 5401 which are used for applications such as bearings, tools, drills and utensils. Popular culture The term was used in both the origin ...
of 1–2 mm thickness to produce electrons within the tube wall. These enter and ionize the fill gas. This is necessary as the low-pressure gas in the tube has little interaction with higher energy photons. However, as photon energies decrease to low levels there is greater gas interaction, and the direct gas interaction increases. At very low energies (less than 25 keV) direct gas ionisation dominates, and a steel tube attenuates the incident photons. Consequently, at these energies, a typical tube design is a long tube with a thin wall which has a larger gas volume, to give an increased chance direct interaction of a particle with the fill gas. Above these low energy levels, there is a considerable variance in response to different photon energies of the same intensity, and a steel-walled tube employs what is known as "energy compensation" in the form of filter rings around the naked tube, which attempts to compensate for these variations over a large energy range. A chrome steel Geiger-Müller tube is about 1% efficient over a wide range of energies.’’Geiger Muller Tubes; issue 1’’ published by Centronics Ltd, UK.


Neutron detection

A variation of the Geiger tube is used to measure
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s, where the gas used is boron trifluoride or helium-3 and a plastic moderator is used to slow the neutrons. This creates an
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be prod ...
inside the detector and thus neutrons can be counted.


Gamma measurement—personnel protection and process control

The term "Geiger counter" is commonly used to mean a hand-held survey type meter, however the Geiger principle is in wide use in installed "area gamma" alarms for personnel protection, and in process measurement and interlock applications. A Geiger tube is still the sensing device, but the processing electronics will have a higher degree of sophistication and reliability than that used in a hand held survey meter.


Physical design

For hand-held units there are two fundamental physical configurations: the "integral" unit with both detector and electronics in the same unit, and the "two-piece" design which has a separate detector probe and an electronics module connected by a short cable. In the 1930s a mica window was added to the cylindrical design allowing low-penetration radiation to pass through with ease.Korff, SNTM (2012) 20: 271. / s00048-012-0080-y The integral unit allows single-handed operation, so the operator can use the other hand for personal security in challenging monitoring positions, but the two piece design allows easier manipulation of the detector, and is commonly used for alpha and beta surface contamination monitoring where careful manipulation of the probe is required or the weight of the electronics module would make operation unwieldy. A number of different sized detectors are available to suit particular situations, such as placing the probe in small apertures or confined spaces. Gamma and X-Ray detectors generally use an "integral" design so the Geiger–Müller tube is conveniently within the electronics enclosure. This can easily be achieved because the casing usually has little attenuation, and is employed in ambient gamma measurements where distance from the source of radiation is not a significant factor. However, to facilitate more localised measurements such as "surface dose", the position of the tube in the enclosure is sometimes indicated by targets on the enclosure so an accurate measurement can be made with the tube at the correct orientation and a known distance from the surface. There is a particular type of gamma instrument known as a "hot spot" detector which has the detector tube on the end of a long pole or flexible conduit. These are used to measure high radiation gamma locations whilst protecting the operator by means of distance shielding. Particle detection of alpha and beta can be used in both integral and two-piece designs. A pancake probe (for alpha/beta) is generally used to increase the area of detection in two-piece instruments whilst being relatively light weight. In integral instruments using an end window tube there is a window in the body of the casing to prevent shielding of particles. There are also hybrid instruments which have a separate probe for particle detection and a gamma detection tube within the electronics module. The detectors are switchable by the operator, depending the radiation type that is being measured.


Guidance on application use

In the
United Kingdom The United Kingdom of Great Britain and Northern Ireland, commonly known as the United Kingdom (UK) or Britain, is a country in Europe, off the north-western coast of the continental mainland. It comprises England, Scotland, Wales and ...
the National Radiological Protection Board issued a user guidance note on selecting the best portable instrument type for the radiation measurement application concerned.
Selection, use and maintenance of portable monitoring instruments. UK HSE
This covers all radiation protection instrument technologies and includes a guide to the use of G-M detectors.


History

In 1908 Hans Geiger, under the supervision of Ernest Rutherford at the Victoria University of Manchester (now the
University of Manchester The University of Manchester is a public university, public research university in Manchester, England. The main campus is south of Manchester city centre, Manchester City Centre on Wilmslow Road, Oxford Road. The university owns and operates majo ...
), developed an experimental technique for detecting alpha particles that would later be used to develop the Geiger–Müller tube in 1928. This early counter was only capable of detecting alpha particles and was part of a larger experimental apparatus. The fundamental ionization mechanism used was discovered by John Sealy Townsend between 1897 and 1901, and is known as the Townsend discharge, which is the ionization of molecules by ion impact. It was not until 1928 that Geiger and
Walther Müller Walther Müller (6 September 1905, in Hanover – 4 December 1979, in Walnut Creek, California) was a German physicist, most well known for his improvement of Hans Geiger's counter for ionizing radiation, now known as the Geiger-Müller tube. ...
(a PhD student of Geiger) developed the sealed Geiger–Müller tube which used basic ionization principles previously used experimentally. Small and rugged, not only could it detect alpha and beta radiation as prior models had done, but also gamma radiation. Now a practical radiation instrument could be produced relatively cheaply, and so the Geiger counter was born. As the tube output required little electronic processing, a distinct advantage in the
thermionic valve A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as a ...
era due to minimal valve count and low power consumption, the instrument achieved great popularity as a portable radiation detector. Modern versions of the Geiger counter use the halogen tube invented in 1947 by
Sidney H. Liebson Sidney H. Liebson (July 9, 1920 – February 7, 2017) received his Ph.D. from the University of Maryland in 1947. His thesis was on the discharge mechanism of Geiger–Müller counters. Liebson received a US Navy award for developing the first equ ...
. It superseded the earlier Geiger–Müller tube because of its much longer life and lower operating voltage, typically 400-900 volts.


Gallery

File:Transuranic waste casks.jpg, Use of a "hot spot" detector on a long pole to survey waste casks. File:RM-80 GM with LCD-90 Micro Controller and Wireless Bluetooth.jpg, G-M pancake detector (right) feeding a microcontroller data-logger (left) sending data to a PC via
bluetooth Bluetooth is a short-range wireless technology standard that is used for exchanging data between fixed and mobile devices over short distances and building personal area networks (PANs). In the most widely used mode, transmission power is limi ...
. A radioactive rock was placed on the detector causing the graph (in background) to rise. File:Cosmos 954 - Recovery 001.jpg, G-M counters being used as gamma survey monitors, in this example seeking radioactive satellite debris


See also

* Becquerel, the SI unit of the radioactive decay rate of a quantity of radioactive material * Civil defense Geiger counters, handheld radiation monitors, both G-M ''and'' ion chambers * Counting efficiency the ratio of radiation events reaching a detector and the number it counts *
Dosimeter A radiation dosimeter is a device that measures dose uptake of external ionizing radiation. It is worn by the person being monitored when used as a personal dosimeter, and is a record of the radiation dose received. Modern electronic personal d ...
, a device used by personnel to measure what radiation dose they have received * Ionization chamber, the simplest ionising radiation detector * Gaseous ionization detector, an overview of the main gaseous detector types *
Geiger–Müller tube The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated ...
, provides a more detailed description of Geiger–Müller tube operation and types * Geiger plateau, the correct operating voltage range for a Geiger–Müller tube * Photon counting * Radioactive decay, the process by which unstable atoms emit radiation *
Safecast (organization) Safecast is an international, volunteer-centered organization devoted to open citizen science for environmental monitoring. Safecast was established by Sean Bonner, Pieter Franken, and Joi Ito shortly after the Fukushima Daiichi nuclear disaster i ...
, use of Geiger–Müller counter technology in citizen science * Scintillation counter, a gasless radiation detector * Sievert, the SI unit of effects of low levels of radiation on the human body


References


External links


How a Geiger counter works.
{{Authority control Particle detectors Laboratory equipment Counting instruments Ionising radiation detectors 1908 introductions 1928 introductions English inventions German inventions Radiation protection