Gyroelongated Triangular Bicupola
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the gyroelongated triangular bicupola is one of the
Johnson solid In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that isohedral, each face must be the same polygon, or that the same polygons join around each Vertex (geometry), ver ...
s (). As the name suggests, it can be constructed by gyroelongating a triangular bicupola (either
triangular orthobicupola In geometry, the triangular orthobicupola is one of the Johnson solids (). As the name suggests, it can be constructed by attaching two triangular cupolas () along their bases. It has an equal number of squares and triangles at each vertex; howev ...
, , or the
cuboctahedron A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
) by inserting a
hexagonal antiprism In geometry, the hexagonal antiprism is the 4th in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. Antiprisms are similar to prisms except the bases are twisted relative to each oth ...
between its congruent halves. The gyroelongated triangular bicupola is one of five Johnson solids which are
chiral Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from ...
, meaning that they have a "left-handed" and a "right-handed" form. In the illustration to the right, each square face on the bottom half of the figure is connected by a path of two triangular faces to a square face above it and to the right. In the figure of opposite chirality (the mirror image of the illustrated figure), each bottom square would be connected to a square face above it and to the left. The two chiral forms of are not considered different Johnson solids.


Formulae

The following
formula In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a ''chemical formula''. The informal use of the term ''formula'' in science refers to the general construct of a relationship betwee ...
e for
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The de ...
and
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc ...
can be used if all
faces The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affe ...
are regular, with edge length ''a'':
Stephen Wolfram Stephen Wolfram (; born 29 August 1959) is a British-American computer scientist, physicist, and businessman. He is known for his work in computer science, mathematics, and theoretical physics. In 2012, he was named a fellow of the American Ma ...
,
Gyroelongated triangular bicupola
from
Wolfram Alpha WolframAlpha ( ) is an answer engine developed by Wolfram Research. It answers factual queries by computing answers from externally sourced data. WolframAlpha was released on May 18, 2009 and is based on Wolfram's earlier product Wolfram Mathe ...
. Retrieved July 30, 2010.
:V= \sqrt \left(\frac+\sqrt\right) a^3 \approx 4.69456...a^3 :A=\left(6+5\sqrt\right)a^2 \approx 14.6603...a^2


References


External links

* Johnson solids Chiral polyhedra {{Polyhedron-stub