HOME

TheInfoList



OR:

Gustducin is a
G protein G proteins, also known as guanine nucleotide-binding proteins, are a family of proteins that act as molecular switches inside cells, and are involved in transmitting signals from a variety of stimuli outside a cell to its interior. Their act ...
associated with
taste The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception produced or stimulated when a substance in the mouth reacts chemically with taste receptor ...
and the
gustatory system The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception produced or stimulated when a substance in the mouth reacts chemically with taste receptor ...
, found in some
taste receptor A taste receptor or tastant is a type of cellular receptor which facilitates the sensation of taste. When food or other substances enter the mouth, molecules interact with saliva and are bound to taste receptors in the oral cavity and other loc ...
cells. Research on the discovery and isolation of gustducin is recent. It is known to play a large role in the transduction of bitter, sweet and umami stimuli. Its pathways (especially for detecting bitter stimuli) are many and diverse. An intriguing feature of gustducin is its similarity to
transducin Transducin (Gt) is a protein naturally expressed in vertebrate retina rods and cones and it is very important in vertebrate phototransduction. It is a type of heterotrimeric G-protein with different α subunits in rod and cone photoreceptors. L ...
. These two G proteins have been shown to be structurally and functionally similar, leading researchers to believe that the sense of taste evolved in a similar fashion to the sense of
sight Visual perception is the ability to interpret the surrounding Biophysical environment, environment through photopic vision (daytime vision), color vision, scotopic vision (night vision), and mesopic vision (twilight vision), using light in the ...
. Gustducin is a heterotrimeric protein composed of the products of the
GNAT3 Guanine nucleotide-binding protein G(t) subunit alpha-3, also known as gustducin alpha-3 chain, is a protein subunit that in humans is encoded by the ''GNAT3'' gene. Gustducin alpha-3 chain is a subunit of the heterotrimeric G protein gustducin th ...
(α-subunit),
GNB1 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 is a protein that in humans is encoded by the ''GNB1'' gene. Function Heterotrimeric guanine nucleotide-binding proteins (G proteins), which integrate signals between receptors a ...
(β-subunit) and
GNG13 Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-13 is a protein that in humans is encoded by the ''GNG13'' gene. Interactions GNG13 has been shown to interact with GNB5 Guanine nucleotide-binding protein subunit beta-5 is a pr ...
(γ-subunit).


Discovery

Gustducin was discovered in 1992 when degenerate
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
primers were synthesized and mixed with a taste tissue cDNA library. The DNA products were amplified by the
polymerase chain reaction The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) t ...
method, and eight positive clones were shown to encode the α subunits of G-proteins, (which interact with
G-protein-coupled receptors G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related p ...
). Of these eight, two had previously been shown to encode rod and
cone A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines con ...
α-
transducin Transducin (Gt) is a protein naturally expressed in vertebrate retina rods and cones and it is very important in vertebrate phototransduction. It is a type of heterotrimeric G-protein with different α subunits in rod and cone photoreceptors. L ...
. The eighth clone, α-gustducin, was unique to the
gustatory The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception produced or stimulated when a substance in the mouth reacts chemically with taste receptor ...
tissue.


Comparisons with transducin

Upon analyzing the
amino-acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ami ...
sequence of α-gustducin, it was discovered that α-gustducins and α-transducins were closely related. This work showed that α-gustducin's protein sequence gives it 80% identity to both rod and cone a-transducin. Despite the structural similarities, the two proteins have very different functionalities. However, the two proteins have similar mechanism and capabilities. Transducin removes the inhibition from cGMP
Phosphodiesterase A phosphodiesterase (PDE) is an enzyme that breaks a phosphodiester bond. Usually, ''phosphodiesterase'' refers to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many oth ...
, which leads to the breakdown of cGMP. Similarly, α-gustducin binds the inhibitory subunits of taste cell
cAMP Camp may refer to: Outdoor accommodation and recreation * Campsite or campground, a recreational outdoor sleeping and eating site * a temporary settlement for nomads * Camp, a term used in New England, Northern Ontario and New Brunswick to descri ...
Phosphodiesterase which causes a decrease in cAMP levels. Also, the terminal 38 amino acids of α-gustducin and α-transducin are identical. This suggests that gustducin can interact with
opsin Animal opsins are G-protein-coupled receptors and a group of proteins made light-sensitive via a chromophore, typically retinal. When bound to retinal, opsins become Retinylidene proteins, but are usually still called opsins regardless. Most pro ...
and opsin-like G-coupled receptors. Conversely, this also suggests that transducin can interact with
taste receptor A taste receptor or tastant is a type of cellular receptor which facilitates the sensation of taste. When food or other substances enter the mouth, molecules interact with saliva and are bound to taste receptors in the oral cavity and other loc ...
s. The structural similarities between gustducin and transducin are so great that comparison with transducin were used to propose a model of gustducin's role and functionality in taste transduction. Other G protein α-subunits have been identified in TRCs (e.g. Gαi-2, Gαi-3, Gα14, Gα15, Gαq, Gαs) with function that has not yet been determined.


Location

While gustducin was known to be expressed in some taste receptor cells (TRCs), studies with rats showed that gustducin was also present in a limited subset of cells lining the stomach and intestine. These cells appear to share several feature of TRCs. Another study with humans brought to light two immunoreactive patterns for α-gustducin in human circumavallate and foliate taste cells:
plasmalemma The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
l and
cytosolic The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells (intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondrio ...
. These two studies showed that gustducin is distributed through gustatory tissue and some gastric and
intestinal The gastrointestinal tract (GI tract, digestive tract, alimentary canal) is the tract or passageway of the digestive system that leads from the mouth to the anus. The GI tract contains all the major organs of the digestive system, in humans ...
tissue and gustducin is presented either in the cytoplasm or in apical membranes on TRC surfaces. Research showed that bitter-stimulated type 2 taste receptors (T2R/TRB) are only found in taste receptor cells positive for the expression of gustducin. α-Gustducin is selectively expressed in ~25–30% of TRCs


Evolution of the gustducin-mediated signaling model

Due to its structural similarity to transducin, gustducin was predicted to activate a
phosphodiesterase A phosphodiesterase (PDE) is an enzyme that breaks a phosphodiester bond. Usually, ''phosphodiesterase'' refers to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many oth ...
(PDE). Phosphodieterases were found in taste tissues and their activation was tested
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology an ...
with both gustducin and transducin. This experiment revealed transducin and gustducin were both expressed in taste tissue (1:25 ratio) and that both G proteins are capable of activating
retinal Retinal (also known as retinaldehyde) is a polyene chromophore. Retinal, bound to proteins called opsins, is the chemical basis of visual phototransduction, the light-detection stage of visual perception (vision). Some microorganisms use retin ...
PDE. Furthermore, when present with
denatonium Denatonium, usually available as denatonium benzoate (under trade names such as Denatrol, BITTERANT-b, BITTER+PLUS, ''Bitrex'', and ''Aversion'') and as denatonium saccharide (BITTERANT-s), is the most bitter chemical compound known, with bitterne ...
and quinine, both G proteins can activate taste specific PDEs. This indicated that both gustducin and transducin are important in the signal transduction of denatonium and quinine. The 1992 research also investigated the role of gustducin in bitter taste reception by using "knock-out" mice lacking the gene for α-gustducin. A taste test with knock-out and control mice revealed that the knock-out mice showed no preference between bitter and regular food in most cases. When the α-gustducin gene was re-inserted into the
knock-out mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are important ...
, the original taste ability returned. However, the loss of the α-gustducin gene did not completely remove the ability of the knock-out mice to taste bitter food, indicating that α-gustducin is not the only mechanism for tasting bitter food. It was thought at the time that an alternative mechanism of bitter taste detection could be associated with the βγ subunit of gustducin. This theory was later validated when it was discovered that both peripheral and central gustatory neurons typically respond to more than one type of taste stimulant, although a neuron typically would favor one specific stimulant over others. This suggests that, while many neurons favor bitter taste stimuli, neurons that favor other stimuli such as sweet and umami may be capable of detecting bitter stimuli in the absence of bitter stimulant receptors, as with the knock-out mice.


Second messengers IP3 and cAMP

Until recently, the nature of gustducin and its
second messengers Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form or cell signaling, encompassing both first me ...
was unclear. It was clear, however, that gustducin transduced intracellular signals. Spielman was one of the first to look at the speed of taste reception, utilizing the quenched-flow technique. When the taste cells were exposed to the bitter stimulants denatonium and sucrose octaacetate, the intracellular response - a transient increase of IP3 - occurred within 50-100 millisecond of stimulation. This was not unexpected, as it was known that transducin was capable of sending signals within rod and cone cells at similar speeds. This indicated that IP3 was one of the second messengers used in bitter taste transduction. It was later discovered that cAMP also causes an influx of cations during bitter and some sweet taste transduction, leading to the conclusion that it also acted as a second messenger to gustducin.


Bitter transduction

When bitter-stimulated T2R/TRB receptors activate gustducin heterotrimers, gustducin acts to mediate two responses in
taste receptor A taste receptor or tastant is a type of cellular receptor which facilitates the sensation of taste. When food or other substances enter the mouth, molecules interact with saliva and are bound to taste receptors in the oral cavity and other loc ...
cells: a decrease in cAMPs triggered by α-gustducin, and a rise in IP3(
Inositol trisphosphate Inositol trisphosphate or inositol 1,4,5-trisphosphate abbreviated InsP3 or Ins3P or IP3 is an inositol phosphate signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the p ...
) and diacylglycerol (DAG) from βγ-gustducin. Although the following steps of the α-gustducin pathway are unconfirmed, it is suspected that decreased cAMPs may act on protein kinases which would regulate taste receptor cell ion channel activity. It is also possible that cNMP levels directly regulate the activity of cNMP-gated channels and cNMP-inhibited
ion channels Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of io ...
expressed in taste receptor cells. The βγ-gustducin pathway continues with the activation of IP3 receptors and the release of Ca2+ followed by
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
release. Bitter taste transduction models Several models have been suggested for the mechanisms regarding the transduction of bitter taste signals. *Cell-surface receptors: Patch clamping experiments have shown evidence that bitter compounds such as
denatonium Denatonium, usually available as denatonium benzoate (under trade names such as Denatrol, BITTERANT-b, BITTER+PLUS, ''Bitrex'', and ''Aversion'') and as denatonium saccharide (BITTERANT-s), is the most bitter chemical compound known, with bitterne ...
and sucrose octaacetate act directly on specific cell-surface receptors. *Direct activation of G proteins: Certain bitter stimulants such as
quinine Quinine is a medication used to treat malaria and babesiosis. This includes the treatment of malaria due to ''Plasmodium falciparum'' that is resistant to chloroquine when artesunate is not available. While sometimes used for nocturnal leg cr ...
have been show to activate G proteins directly. While these mechanisms have been identified, the physiologic relevance of the mechanism has not yet been established. *PDE activation: Other bitter compounds, such as thioacetamide and propylthiouracil, have been shown to have stimulatory effects on PDEs. This mechanism has been recognized in bovine tongue epithelium contains fungiform papillae. *PDE inhibition: Other bitter compounds have been shown to inhibit PDE. Bacitracin and hydrochloride have been show to inhibit PDE in bovine taste tissue *Channel blockage: Patch clamping experiments have shown that several bitter ions act directly on potassium channels, blocking them. This suggests that the
potassium channels Potassium channels are the most widely distributed type of ion channel found in virtually all organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of cel ...
would be located in the apical region of the taste cells. While this theory seems valid, it has only been identified in
mudpuppy ''Necturus'' is a genus of aquatic salamanders native to the eastern United States and Canada. They are commonly known as waterdogs and mudpuppies. The common mudpuppy ''(N. maculosus)'' is probably the best-known species – as an amphibian wi ...
taste cells. It is thought that these five diverse mechanisms have developed as defense mechanisms. This would imply that many different poisonous or harmful bitter agents exist and these five mechanisms exist to prevent humans from eating or drinking them. It is also possible that some mechanisms can act as backups should a primary mechanism fail. One example of this could be quinine, which has been shown to both inhibit and activate PDE in bovine taste tissue.


Sweet transduction

There are currently two models proposed for sweet taste transduction. The first pathway is a GPCRGs-cAMP pathway. This pathway starts with sucrose and other sugars activating Gs inside the cell through a membrane-bound GPCR. The activated Gas activates adenylyl cyclase to generate cAMP. From this point, one of two pathways can be taken. cAMP may act directly to cause an influx of cations through cAMP- gated channels or cAMP can activate
protein kinase A In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (). PKA has several functions in the cell, including regulatio ...
, which causes the
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
of K+ channels, thus closing the channels, allowing for depolarization of the taste cell, subsequent opening of voltage-gated Ca2+ channels and causing neurotransmitter release . The second pathway is a GPCR-Gq/Gβγ-IP3 pathway which is used with artificial sweeteners. Artificial sweeteners bind and activate GPCRs coupled to PLCβ2 by either α-Gq or Gβγ. The activated subunits activate PLCβ2 to generate IP3 and DAG. IP3 and DAG elicit Ca2+ release from the endoplasmic reticulum and cause cellular depolarization. An influx of Ca2+ triggers neurotransmitter release. While these two pathways coexist in the same TRCs, it is unclear how the receptors selectively mediate cAMP responses to sugars and IP3 responses to artificial sweeteners .


Evolution of bitter taste receptors

Of the five
basic taste The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception produced or stimulated when a substance in the mouth reacts chemically with taste receptor ...
s, three (
sweet Sweetness is a basic taste most commonly perceived when eating foods rich in sugars. Sweet tastes are generally regarded as pleasurable. In addition to sugars like sucrose, many other chemical compounds are sweet, including aldehydes, ketones ...
,
bitter Bitter may refer to: Common uses * Resentment, negative emotion or attitude, similar to being jaded, cynical or otherwise negatively affected by experience * Bitter (taste), one of the five basic tastes Books * '' Bitter (novel)'', a 2022 nove ...
and
umami Umami ( from ja, 旨味 ), or savoriness, is one of the five basic tastes. It has been described as savory and is characteristic of broths and cooked meats. People taste umami through taste receptors that typically respond to glutamates and ...
tastes) are mediated by receptors from the G protein-coupled receptor family. Mammalian bitter taste receptors (T2Rs) are encoded by a gene family of only a few dozen members. It is believed that bitter taste receptors evolved as a mechanism to avoid ingesting poisonous and harmful substances. If this is the case, one might expect different species to develop different bitter taste receptors based on dietary and geographical constraints. With the exception of T2R1 (which lies on
chromosome 5 Chromosome 5 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 5 spans about 181 million base pairs (the building blocks of DNA) and represents almost 6% of the total DNA in cells. C ...
) all human bitter taste receptor genes can be found clustered on
chromosome 7 Chromosome 7 is one of the 23 pairs of chromosomes in humans, who normally have two copies of this chromosome. Chromosome 7 spans about 159 million base pairs (the building material of DNA) and represents between 5 and 5.5 percent of the total D ...
and
chromosome 12 Chromosome 12 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 12 spans about 133 million base pairs (the building material of DNA) and represents between 4 and 4.5 percent of the to ...
. Analyzing the relationships between bitter taste receptor genes show that the genes on the same chromosome are more closely related to each other than genes on different chromosomes. Furthermore, the genes on chromosome 12 have higher sequence similarity than the genes found on chromosome 7. This indicates that these genes evolved via tandem gene duplications and that chromosome 12, as a result of its higher sequence similarity between its genes, went through these tandem duplications more recently than the genes on chromosome 7.


Gustducin in the stomach

Recent work by Enrique Rozengurt has shed some light on the presence of gustducin in the
stomach The stomach is a muscular, hollow organ in the gastrointestinal tract of humans and many other animals, including several invertebrates. The stomach has a dilated structure and functions as a vital organ in the digestive system. The stomach i ...
and gastrointestinal tract. His work suggests that gustducin is present in these areas as a defense mechanism. It is widely known that some drugs and toxins can cause harm and even be lethal if ingested. It has already been theorized that multiple bitter taste reception pathways exist to prevent harmful substances from being ingested, but a person can choose to ignore the taste of a substance. Ronzegurt suggests that the presence of gustducin in epithelial cells in the stomach and gastrointestinal tract are indicative of another line of defense against ingested toxins. Whereas taste cells in the mouth are designed to compel a person to spit out a toxin, these stomach cells may act to force a person to spit up the toxins in the form of
vomit Vomiting (also known as emesis and throwing up) is the involuntary, forceful expulsion of the contents of one's stomach through the mouth and sometimes the nose. Vomiting can be the result of ailments like food poisoning, gastroenterit ...
.


See also

*
transducin Transducin (Gt) is a protein naturally expressed in vertebrate retina rods and cones and it is very important in vertebrate phototransduction. It is a type of heterotrimeric G-protein with different α subunits in rod and cone photoreceptors. L ...
*
gustatory system The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception produced or stimulated when a substance in the mouth reacts chemically with taste receptor ...


References


Further reading

* * * * * * * *


External links

* {{Portal bar, Biology, border=no G proteins