HOME

TheInfoList



OR:

A grid cell is a type of
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
within the
entorhinal cortex The entorhinal cortex (EC) is an area of the brain's allocortex, located in the medial temporal lobe, whose functions include being a widespread network hub for memory, navigation, and the perception of time.Integrating time from experience in the ...
that fires at regular intervals as an animal navigates an open area, allowing it to understand its position in space by storing and integrating information about location, distance, and direction. Grid cells have been found in many animals, including
rats Rats are various medium-sized, long-tailed rodents. Species of rats are found throughout the order Rodentia, but stereotypical rats are found in the genus ''Rattus''. Other rat genera include ''Neotoma'' ( pack rats), ''Bandicota'' (bandicoot ...
, mice,
bat Bats are mammals of the order Chiroptera.''cheir'', "hand" and πτερόν''pteron'', "wing". With their forelimbs adapted as wings, they are the only mammals capable of true and sustained flight. Bats are more agile in flight than most ...
s, monkeys, and humans. Grid cells were discovered in 2005 by
Edvard Moser Edvard Ingjald Moser (; born 27 April 1962) is a Norwegian professor of psychology and neuroscience at thKavli Institute for Systems Neuroscience at the Norwegian University of Science and Technology (NTNU) in Trondheim. In 2005, he and May-Brit ...
,
May-Britt Moser May-Britt Moser (born 4 January 1963) is a Norwegian psychologist and neuroscientist, who is a Professor of Psychology and Neuroscience at the Norwegian University of Science and Technology (NTNU). She and her then-husband, Edvard Moser, share ...
, and their students Torkel Hafting, Marianne Fyhn, and Sturla Molden at the Centre for the Biology of Memory (CBM) in Norway. They were awarded the 2014
Nobel Prize in Physiology or Medicine The Nobel Prize in Physiology or Medicine is awarded yearly by the Nobel Assembly at the Karolinska Institute for outstanding discoveries in physiology or medicine. The Nobel Prize is not a single prize, but five separate prizes that, accord ...
together with John O'Keefe for their discoveries of cells that constitute a positioning system in the brain. The arrangement of spatial firing fields, all at equal distances from their neighbors, led to a hypothesis that these cells encode a neural representation of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
. The discovery also suggested a mechanism for dynamic computation of self-position based on continuously updated information about position and direction. To detect grid cell activity in a typical rat experiment, an
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
which can record single-neuron activity is implanted in the dorsomedial
entorhinal cortex The entorhinal cortex (EC) is an area of the brain's allocortex, located in the medial temporal lobe, whose functions include being a widespread network hub for memory, navigation, and the perception of time.Integrating time from experience in the ...
and collects recordings as the rat moves around freely in an open arena. The resulting data can be visualized by marking the rat's position on a map of the arena every time that neuron fires an
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
. These marks accumulate over time to form a set of small clusters, which in turn form the vertices of a grid of equilateral triangles. The regular triangle pattern distinguishes grid cells from other types of cells that show spatial firing. By contrast, if a place cell from the rat hippocampus is examined in the same way, then the marks will frequently only form one cluster (one "place field") in a given environment, and even when multiple clusters are seen, there is no perceptible regularity in their arrangement.


Background of discovery

In 1971, John O'Keefe and Jonathon Dostrovsky reported the discovery of place cells in the rat
hippocampus The hippocampus (via Latin from Greek , ' seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, ...
—cells that fire action potentials when an animal passes through a specific small region of space, which is called the place field of the cell. This discovery, although controversial at first, led to a series of investigations that culminated in the 1978 publication of a book by O'Keefe and his colleague
Lynn Nadel Lynn Nadel (born November 12, 1942) is an American psychologist who is the Regents' Professor of psychology at the University of Arizona. Nadel specializes in memory, and has investigated the role of the hippocampus in memory formation. Together ...
called ''The Hippocampus as a Cognitive Map'' (a phrase that also appeared in the title of the 1971 paper)—the book argued that the hippocampal neural network instantiates
cognitive map A cognitive map is a type of mental representation which serves an individual to acquire, code, store, recall, and decode information about the relative locations and attributes of phenomena in their everyday or metaphorical spatial environment. T ...
s as hypothesized by the psychologist
Edward C. Tolman Edward Chace Tolman (April 14, 1886 – November 19, 1959) was an American psychologist and a professor of psychology at the University of California, Berkeley. Through Tolman's theories and works, he founded what is now a branch of psychology know ...
. This theory aroused a great deal of interest, and motivated hundreds of experimental studies aimed at clarifying the role of the hippocampus in spatial memory and spatial navigation. Because the entorhinal cortex provides by far the largest input to the hippocampus, it was clearly important to understand the spatial firing properties of entorhinal neurons. The earliest studies, such as Quirk ''et al.'' (1992), described neurons in the entorhinal cortex as having relatively large and fuzzy place fields. The Mosers, however, thought it was possible that a different result would be obtained if recordings were made from a different part of the entorhinal cortex. The entorhinal cortex is a strip of tissue running along the back edge of the rat brain from the ventral to the dorsal sides. Anatomical studies had shown that different sectors of the entorhinal cortex project to different levels of the hippocampus: the dorsal end of the EC projects to the dorsal hippocampus, the ventral end to the ventral hippocampus. This was relevant because several studies had shown that place cells in the dorsal hippocampus have considerably sharper place fields than cells from more ventral levels. Every study of entorhinal spatial activity prior to 2004, however, had made use of electrodes implanted near the ventral end of the EC. Accordingly, together with Marianne Fyhn, Sturla Molden and Menno Witter, the Mosers set out to examine spatial firing from the different dorsal-to-ventral levels of the entorhinal cortex. They found that in the dorsal part of medial entorhinal cortex (MEC), cells had sharply defined place fields like in the hippocampus but the cells fired at multiple locations. The arrangement of the firing fields showed hints of regularity, but the size of the environment was too small for spatial periodicity to be visible in this study. The next set of experiments, reported in 2005, made use of a larger environment, which led to the recognition that the cells were actually firing in a hexagonal grid pattern. The study showed that cells at similar dorsal-to-ventral MEC levels had similar grid spacing and grid orientation but the phase of the grid (the offset of the grid vertices relative to the x and y axes) appeared to be randomly distributed between cells. The periodic firing pattern was expressed independently of the configuration of landmarks, in darkness as well as in the presence of visible landmarks and independently of changes in the animal’s speed and direction, leading the authors to suggest that grid cells expressed a path-integration dependent dynamic computation of the animal’s location. For their discovery of grid cells, May-Britt Moser, and Edvard Moser were awarded the
Nobel Prize in Physiology or Medicine The Nobel Prize in Physiology or Medicine is awarded yearly by the Nobel Assembly at the Karolinska Institute for outstanding discoveries in physiology or medicine. The Nobel Prize is not a single prize, but five separate prizes that, accord ...
in 2014 alongside John O'Keefe.


Properties

Grid cells are neurons that fire when a freely moving animal traverses a set of small regions (firing fields) which are roughly equal in size and arranged in a periodic triangular array that covers the entire available environment. Cells with this firing pattern have been found in all layers of the dorsocaudal medial
entorhinal cortex The entorhinal cortex (EC) is an area of the brain's allocortex, located in the medial temporal lobe, whose functions include being a widespread network hub for memory, navigation, and the perception of time.Integrating time from experience in the ...
(dMEC), but cells in different layers tend to differ in other respects. Layer II contains the largest density of pure grid cells, in the sense that they fire equally regardless of the direction in which an animal traverses a grid location. Grid cells from deeper layers are intermingled with conjunctive cells and
head direction cells Head direction (HD) cells are neurons found in a number of brain regions that increase their firing rates above baseline levels only when the animal's head points in a specific direction. They have been reported in rats, monkeys, mice, chinchillas ...
(i.e. in layers III, V and VI there are cells with a grid-like pattern that fire only when the animal is facing a particular direction). Grid cells that lie next to one another (i.e., cells recorded from the same electrode) usually show the same grid spacing and orientation, but their grid vertices are displaced from one another by apparently random offsets. Cells recorded from separate electrodes at a distance from one another, however, frequently show different grid spacings. Cells that are located more ventrally (that is, farther from the dorsal border of the MEC) generally have larger firing fields at each grid vertex, and correspondingly greater spacing between the grid vertices. The total range of grid spacings is not well established: the initial report described a roughly twofold range of grid spacings (from 39 cm to 73 cm) across the dorsalmost part (upper 25%) of the MEC, but there are indications of considerably larger grid scales in more ventral zones. Brun ''et al.'' (2008) recorded grid cells from multiple levels in rats running along an 18-meter track, and found that the grid spacing expanded from about 25 cm in their dorsalmost sites to about 3 m at the ventralmost sites. These recordings only extended 3/4 of the way to the ventral tip, so it is possible that even larger grids exist. Such multi-scale representations have been shown to be information theoretically desirable. Grid cell activity does not require visual input, since grid patterns remain unchanged when all the lights in an environment are turned off. When visual cues are present, however, they exert strong control over the alignment of the grids: Rotating a cue card on the wall of a cylinder causes grid patterns to rotate by the same amount. Grid patterns appear on the first entrance of an animal into a novel environment, and usually remain stable thereafter. When an animal is moved into a completely different environment, grid cells maintain their grid spacing, and the grids of neighboring cells maintain their relative offsets.


Interactions with hippocampal place cells

When a rat is moved to a different environment, the spatial activity patterns of hippocampal place cells usually show ''"complete remapping"''—that is, the pattern of place fields reorganizes in a way that bears no detectable resemblance to the pattern in the original environment. If the features of an environment are altered less radically, however, the place field pattern may show a lesser degree of change, referred to as ''"rate remapping"'', in which many cells alter their firing rates but the majority of cells retain place fields in the same locations as before. This was examined using simultaneous recordings of hippocampal and entorhinal cells, and found that in situations where the hippocampus shows rate remapping, grid cells show unaltered firing patterns, whereas when the hippocampus shows complete remapping, grid cell firing patterns show unpredictable shifts and rotations.


Theta rhythmicity

Neural activity in nearly every part of the hippocampal system is modulated by the
hippocampal theta rhythm The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, an ...
, which has a frequency range of about 6–9 Hz in rats. The entorhinal cortex is no exception: like the hippocampus, it receives
cholinergic Cholinergic agents are compounds which mimic the action of acetylcholine and/or butyrylcholine. In general, the word " choline" describes the various quaternary ammonium salts containing the ''N'',''N'',''N''-trimethylethanolammonium cati ...
and GABAergic input from the medial septal area, the central controller of theta. Grid cells, like hippocampal place cells, show strong theta modulation. Grid cells from layer II of the MEC also resemble hippocampal place cells in that they show
phase precession Phase precession is a neurophysiological process in which the time of firing of action potentials by individual neurons occurs progressively earlier in relation to the phase of the local field potential oscillation with each successive cycle. In ...
—that is, their spike activity advances from late to early phases of the theta cycle as an animal passes through a grid vertex. A recent model of grid cell activity explained this phase precession by assuming the presence of 1-dimensional
attractor network An attractor network is a type of recurrent dynamical network, that evolves toward a stable pattern over time. Nodes in the attractor network converge toward a pattern that may either be fixed-point (a single state), cyclic (with regularly recurrin ...
composed of stellate cells. Most grid cells from layer III do not precess, but their spike activity is largely confined to half of the theta cycle. The grid cell phase precession is not derived from the hippocampus, because it continues to appear in animals whose hippocampus has been inactivated by an agonist of GABA.


Possible functions

Many species of mammals can keep track of spatial location even in the absence of visual, auditory, olfactory, or tactile cues, by integrating their movements—the ability to do this is referred to in the literature as
path integration Path integration is the method thought to be used by animals for dead reckoning. History Charles Darwin first postulated an inertially-based navigation system in animals in 1873.hippocampus The hippocampus (via Latin from Greek , ' seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, ...
, which may make the associations between place and events that are needed for the formation of memories. In contrast to a hippocampal place cell, a grid cell has multiple firing fields, with regular spacing, which tessellate the environment in a hexagonal pattern. The unique properties of grid cells are as follows: # Grid cells have firing fields dispersed over the entire environment (in contrast to place fields which are restricted to certain specific regions of the environment) # The firing fields are organized into a
hexagonal lattice The hexagonal lattice or triangular lattice is one of the five two-dimensional Bravais lattice types. The symmetry category of the lattice is wallpaper group p6m. The primitive translation vectors of the hexagonal lattice form an angle of 120° ...
# Firing fields are generally equally spaced apart, such that the distance from one firing field to all six adjacent firing fields is approximately the same (though when an environment is resized, the field spacing may shrink or expand differently in different directions; Barry et al. 2007) # Firing fields are equally positioned, such that the six neighboring fields are located at approximately 60 degree increments The grid cells are anchored to external landmarks, but persist in darkness, suggesting that grid cells may be part of a self-motion–based map of the spatial environment.


See also

*
Boundary cell Boundary cells (also known as border cells or boundary vector cells) are neurons found in the hippocampal formation that respond to the presence of an environmental boundary at a particular distance and direction from an animal. The existence of cel ...
, discovered in 2008.


References


External links


Mosers GroupMovie of a grid cell
{{DEFAULTSORT:Grid Cell Neurons Perception Neurology Brain Spatial cognition