In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
,
statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, and
computational modelling, a grey box model
[Kroll, Andreas (2000). Grey-box models: Concepts and application. In: New Frontiers in Computational Intelligence and its Applications, vol.57 of Frontiers in artificial intelligence and applications, pp. 42-51. IOS Press, Amsterdam.][Sohlberg, B., and Jacobsen, E.W., 2008]
Grey box modelling - branches and experiences
Proc. 17th World Congress, Int. Federation of Automatic Control, Seoul. pp 11415-11420 combines a partial theoretical structure with data to complete the model. The theoretical structure may vary from information on the smoothness of results, to models that need only parameter values from data or existing literature.
[Whiten, B., 2013]
Model completion and validation using inversion of grey box models
ANZIAM J.,54 (CTAC 2012) pp C187–C199. Thus, almost all models are grey box models as opposed to
black box
In science, computing, and engineering, a black box is a system which can be viewed in terms of its inputs and outputs (or transfer characteristics), without any knowledge of its internal workings. Its implementation is "opaque" (black). The te ...
where no model form is assumed or
white box models that are purely theoretical. Some models assume a special form such as a
linear regression
In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A mode ...
or
neural network
A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or signal pathways. While individual neurons are simple, many of them together in a network can perfor ...
.
[Heaton, J., 2012. Introduction to the math of neural networks, Heaton Research Inc. (Chesterfield, MO), ] These have special analysis methods. In particular
linear regression
In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A mode ...
techniques
are much more efficient than most non-linear techniques.
The model can be
deterministic
Determinism is the metaphysical view that all events within the universe (or multiverse) can occur only in one possible way. Deterministic theories throughout the history of philosophy have developed from diverse and sometimes overlapping mo ...
or
stochastic Stochastic (; ) is the property of being well-described by a random probability distribution. ''Stochasticity'' and ''randomness'' are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; i ...
(i.e. containing random components) depending on its planned use.
Model form
The general case is a
non-linear model with a partial theoretical structure and some unknown parts derived from data. Models with unlike theoretical structures need to be evaluated individually,
[Mathworks, 2013]
Supported grey box models
/ref>[.] possibly using simulated annealing
Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. ...
or genetic algorithms
In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to g ...
.
Within a particular model structure, parameters[Nash, J.C. and Walker-Smith, M. 1987. Nonlinear parameter estimation, Marcel Dekker, Inc. (New York).] or variable parameter relations[Whiten, W.J., 1971. Model building techniques applied to mineral treatment processes, Symp. on Automatic Control Systems in Mineral Processing Plants, (Australas. Inst. Min. Metall., S. Queensland Branch, Brisbane), 129-148.] may need to be found. For a particular structure it is arbitrarily assumed that the data consists of sets of feed vectors f, product vectors p, and operating condition vectors c. Typically c will contain values extracted from f, as well as other values. In many cases a model can be converted to a function of the form:[Whiten, W.J., 1994. Determination of parameter relations within non-linear models, SIGNUM Newsletter, 29(3–4,) 2–5. 10.1145/192527.192535.][Whiten, B., 2014]
Determining the form of ordinary differential equations using model inversion
ANZIAM J. 55 (EMAC2013) pp.C329–C347.
: m(f,p,q)
where the vector function m gives the errors between the data p, and the model predictions. The vector q gives some variable parameters that are the model's unknown parts.
The parameters q vary with the operating conditions c in a manner to be determined. This relation can be specified as q = Ac where A is a matrix of unknown coefficients, and c as in linear regression
In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A mode ...
includes a constant term
In mathematics, a constant term (sometimes referred to as a free term) is a term in an algebraic expression that does not contain any variables and therefore is constant. For example, in the quadratic polynomial,
:x^2 + 2x + 3,\
The number 3 i ...
and possibly transformed values of the original operating conditions to obtain non-linear relationsPolynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
Spline (mathematics)
In mathematics, a spline is a function defined piecewise by polynomials.
In interpolating problems, spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low degree polynomia ...
between the original operating conditions and q. It is then a matter of selecting which terms in A are non-zero and assigning their values. The model completion becomes an optimization
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfiel ...
problem to determine the non-zero values in A that minimizes the error terms m(f,p,Ac) over the data.[Kojovic, T., and Whiten W. J., 1994. Evaluation of the quality of simulation models, Innovations in mineral processing, (Lauretian University, Sudbury) pp 437–446. ][Kojovic, T., 1989. The development and application of Model - an automated model builder for mineral processing, PhD thesis, The University of Queensland.][Xiao, J., 1998. Extensions of model building techniques and their applications in mineral processing, PhD thesis, The University of Queensland.]
Model completion
Once a selection of non-zero values is made, the remaining coefficients in A can be determined by minimizing ''m''(''f'',''p'',''Ac'') over the data with respect to the nonzero values in A, typically by non-linear least squares
Non-linear least squares is the form of least squares analysis used to fit a set of ''m'' observations with a model that is non-linear in ''n'' unknown parameters (''m'' ≥ ''n''). It is used in some forms of nonlinear regression. The ...
. Selection of the nonzero terms can be done by optimization methods such as simulated annealing
Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. ...
and evolutionary algorithms
Evolutionary algorithms (EA) reproduce essential elements of the biological evolution in a computer algorithm in order to solve "difficult" problems, at least Approximation, approximately, for which no exact or satisfactory solution methods are k ...
. Also the non-linear least squares
Non-linear least squares is the form of least squares analysis used to fit a set of ''m'' observations with a model that is non-linear in ''n'' unknown parameters (''m'' ≥ ''n''). It is used in some forms of nonlinear regression. The ...
can provide accuracy estimates for the elements of A that can be used to determine if they are significantly different from zero, thus providing a method of term selection.
It is sometimes possible to calculate values of q for each data set, directly or by non-linear least squares
Non-linear least squares is the form of least squares analysis used to fit a set of ''m'' observations with a model that is non-linear in ''n'' unknown parameters (''m'' ≥ ''n''). It is used in some forms of nonlinear regression. The ...
. Then the more efficient linear regression
In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A mode ...
can be used to predict q using c thus selecting the non-zero values in A and estimating their values. Once the non-zero values are located non-linear least squares
Non-linear least squares is the form of least squares analysis used to fit a set of ''m'' observations with a model that is non-linear in ''n'' unknown parameters (''m'' ≥ ''n''). It is used in some forms of nonlinear regression. The ...
can be used on the original model m(f,p,Ac) to refine these values .
A third method is model inversion, which converts the non-linear m(f,p,Ac) into an approximate linear form in the elements of A, that can be examined using efficient term selection and evaluation of the linear regression. For the simple case of a single q value (q = aTc) and an estimate q* of q. Putting dq = aTc − q* gives
: m(f,p,aTc) = m(f,p,q* + dq) ≈ m(f,p.q*) + dq m’(f,p,q*) = m(f,p.q*) + (aTc − q*) m’(f,p,q*)
so that aT is now in a linear position with all other terms known, and thus can be analyzed by linear regression
In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A mode ...
techniques. For more than one parameter the method extends in a direct manner. After checking that the model has been improved this process can be repeated until convergence. This approach has the advantages that it does not need the parameters q to be able to be determined from an individual data set and the linear regression is on the original error terms
Model validation
Where sufficient data is available, division of the data into a separate model construction set and one or two evaluation sets is recommended. This can be repeated using multiple selections of the construction set and the resulting models averaged or used to evaluate prediction differences.
A statistical test such as chi-squared on the residuals is not particularly useful. The chi squared test requires known standard deviations which are seldom available, and failed tests give no indication of how to improve the model. There are a range of methods to compare both nested and non nested models. These include comparison of model predictions with repeated data.
An attempt to predict the residuals m(, ) with the operating conditions c using linear regression will show if the residuals can be predicted. Residuals that cannot be predicted offer little prospect of improving the model using the current operating conditions. Terms that do predict the residuals are prospective terms to incorporate into the model to improve its performance.
The model inversion technique above can be used as a method of determining whether a model can be improved. In this case selection of nonzero terms is not so important and linear prediction can be done using the significant eigenvectors
In linear algebra, an eigenvector ( ) or characteristic vector is a Vector (mathematics and physics), vector that has its direction (geometry), direction unchanged (or reversed) by a given linear map, linear transformation. More precisely, an e ...
of the regression matrix. The values in A determined in this manner need to be substituted into the nonlinear model to assess improvements in the model errors. The absence of a significant improvement indicates the available data is not able to improve the current model form using the defined parameters. Extra parameters can be inserted into the model to make this test more comprehensive.
See also
References
{{reflist, 35em
Mathematical modeling
Mathematical theorems