In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the great dodecahemicosahedron (or small dodecahemiicosahedron) is a
nonconvex uniform polyhedron
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, ...
, indexed as U
65. It has 22 faces (12
pentagons and 10
hexagons
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.
Regular hexagon
A ''regular hexagon'' has ...
), 60 edges, and 30 vertices. Its
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines ...
is a
crossed quadrilateral.
It is a
hemipolyhedron
In geometry, a hemipolyhedron is a uniform star polyhedron some of whose faces pass through its center. These "hemi" faces lie parallel to the faces of some other symmetrical polyhedron, and their count is half the number of faces of that other p ...
with ten hexagonal faces passing through the model center.
Related polyhedra
Its
convex hull is the
icosidodecahedron
In geometry, an icosidodecahedron is a polyhedron with twenty (''icosi'') triangular faces and twelve (''dodeca'') pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 ...
. It also shares its
edge arrangement with the
dodecadodecahedron
In geometry, the dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U36. It is the rectification of the great dodecahedron (and that of its dual, the small stellated dodecahedron). It was discovered independently by , and .
The e ...
(having the pentagonal faces in common), and with the
small dodecahemicosahedron
In geometry, the small dodecahemicosahedron (or great dodecahemiicosahedron) is a nonconvex uniform polyhedron, indexed as U62. It has 22 faces (12 pentagrams and 10 hexagons), 60 edges, and 30 vertices. Its vertex figure is a crossed quadrilate ...
(having the hexagonal faces in common).
Great dodecahemicosacron
The great dodecahemicosacron is the dual of the great dodecahemicosahedron, and is one of nine
dual hemipolyhedra. It appears visually indistinct from the
small dodecahemicosacron.
Since the hemipolyhedra have
faces passing through the center, the
dual figures have corresponding
vertices at infinity; properly, on the
real projective plane
In mathematics, the real projective plane is an example of a compact non- orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has ...
at infinity.
In
Magnus Wenninger
Father Magnus J. Wenninger OSB (October 31, 1919Banchoff (2002)– February 17, 2017) was an American mathematician who worked on constructing polyhedron models, and wrote the first book on their construction.
Early life and education
Born to Ge ...
's ''Dual Models'', they are represented with intersecting
prisms, each extending in both directions to the same vertex at infinity, in order to maintain symmetry. In practice, the model prisms are cut off at a certain point that is convenient for the maker. Wenninger suggested these figures are members of a new class of
stellation
In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in ''n'' dimensions to form a new figure. Starting with an original figure, the process extends specific el ...
figures, called ''stellation to infinity''. However, he also suggested that strictly speaking, they are not polyhedra because their construction does not conform to the usual definitions.
The great dodecahemicosahedron can be seen as having ten
vertices at infinity.
See also
*
List of uniform polyhedra
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive ( transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are c ...
*
Hemi-icosahedron
A hemi-icosahedron is an abstract regular polyhedron, containing half the faces of a regular icosahedron. It can be realized as a projective polyhedron (a tessellation of the real projective plane by 10 triangles), which can be visualized by cons ...
- The ten vertices at infinity correspond directionally to the 10 vertices of this abstract polyhedron.
References
* (Page 101, Duals of the (nine) hemipolyhedra)
External links
*
*
Uniform polyhedra and duals
Uniform polyhedra
{{Polyhedron-stub