Graphene Production Techniques
   HOME

TheInfoList



OR:

A rapidly increasing list of graphene production techniques have been developed to enable
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
's use in commercial applications. Isolated 2D crystals cannot be grown via chemical synthesis beyond small sizes even in principle, because the rapid growth of
phonon In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
density with increasing lateral size forces 2D crystallites to bend into the third dimension. However, other routes to
2d materials In materials science, the term single-layer materials or 2D materials refers to crystalline solids consisting of a single layer of atoms. These materials are promising for some applications but remain the focus of research. Single-layer materials ...
exist: The early approaches of cleaving multi-layer graphite into single layers or growing it epitaxially by depositing a layer of carbon onto another material have been supplemented by numerous alternatives. In all cases, the graphite must bond to some substrate to retain its 2d shape.


Exfoliation

As of 2014 exfoliation produced graphene with the lowest number of defects and highest electron mobility.


Adhesive tape

Andre Geim , birth_date = , birth_place = Sochi, Russian SFSR, Soviet Union , death_date = , death_place = , workplaces = , nationality = Dutch and British , fields = Condensed matter physics ...
and
Konstantin Novoselov Sir Konstantin Sergeevich Novoselov ( rus, Константи́н Серге́евич Новосёлов, p=kənstɐnʲˈtʲin sʲɪrˈɡʲe(j)ɪvʲɪtɕ nəvɐˈsʲɵləf; born 1974) is a Russian-British physicist, and a professor at the ...
initially used adhesive tape to split
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on large ...
into graphene. Achieving single layers typically requires multiple exfoliation steps, each producing a slice with fewer layers, until only one remains. After exfoliation the flakes are deposited on a silicon wafer. Crystallites larger than 1 mm and visible to the naked eye can be obtained.


Robotic pixel assembly of van der Waals solids

Robotic pixel assembly method for manufacturing vdW solids provides high-speed and controllable design (area, geometry, and angle). In this approach, robotic assembly of prepatterned ‘pixels’ made from atomically thin two-dimensional components forms heterojunction devices. In the first implementation of this approach, the process takes place within a high-vacuum environment to allow clean interfaces.


Wedge-based

In this method, a sharp single-crystal diamond wedge penetrates onto the graphite source to exfoliate layers. This method uses highly ordered pyrolytic graphite (HOPG) as the starting material. The experiments were supported by molecular dynamic simulations.


Graphite oxide reduction

P. Boehm reported producing monolayer flakes of reduced graphene oxide in 1962. Rapid heating of graphite oxide and exfoliation yields highly dispersed carbon powder with a few percent of graphene flakes. Reduction of graphite oxide monolayer films, e.g. by
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine ...
with annealing in
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
/
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
also yielded graphene films. Later the oxidation protocol was enhanced to yield
graphene oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the ...
with an almost intact carbon framework that allows efficient removal of functional groups, neither of which was originally possible. The measured
charge carrier In physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. The term is used ...
mobility exceeded /Vs.
Spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wav ...
analysis of reduced graphene oxide has been conducted.


Liquid phase exfoliation First demonstrated in 2008, Liquid-phase exfoliation (LPE) is a solution-processing method which is used to convert layered crystals into 2-dimensional nanosheets in large quantities. It is currently one of the pillar methods for producing 2D nanos ...
: Shearing

In 2014 defect-free, unoxidized graphene-containing liquids were made from graphite using mixers that produce local shear rates greater than s-1. The method was claimed to be applicable to other 2D materials, including
boron nitride Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal ...
,
Molybdenum disulfide Molybdenum disulfide (or moly) is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is . The compound is classified as a transition metal dichalcogenide. It is a silvery black solid that occurs as the mineral molybdenit ...
and other layered crystals. The liquid phase shear technique with the aid of surfactant is more suitable for pristine graphene exfoliation at room temperature and avoiding multi-step preparation.


Liquid Phase Exfoliation: Sonication


Solvent-aided

Dispersing graphite in a proper liquid medium can produce graphene by
sonication A sonicator at the Weizmann Institute of Science during sonicationSonication is the act of applying sound energy to agitate particles in a sample, for various purposes such as the extraction of multiple compounds from plants, microalgae and seawe ...
in a process known as
Liquid Phase Exfoliation First demonstrated in 2008, Liquid-phase exfoliation (LPE) is a solution-processing method which is used to convert layered crystals into 2-dimensional nanosheets in large quantities. It is currently one of the pillar methods for producing 2D nanos ...
. Graphene is separated from graphite by
centrifugation Centrifugation is a mechanical process which involves the use of the centrifugal force to separate particles from a solution according to their size, shape, density, medium viscosity and rotor speed. The denser components of the mixture migrate ...
, producing graphene concentrations initially up to in
N-methylpyrrolidone ''N''-Methyl-2-pyrrolidone (NMP) is an organic compound consisting of a 5-membered lactam. It is a colorless liquid, although impure samples can appear yellow. It is miscible with water and with most common organic solvents. It also belongs to t ...
(NMP) and later to in NMP,. Using a suitable
ionic liquid An ionic liquid (IL) is a salt in the liquid state. In some contexts, the term has been restricted to salts whose melting point is below a specific temperature, such as . While ordinary liquids such as water and gasoline are predominantly made of ...
as the dispersing liquid medium produced concentrations of . Graphene concentration produced by this method is can be low, probably because of the large energy required to fragment the crystal during sonication. Adding a
surfactant Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, foaming ...
to a solvent prior to sonication prevents restacking by adsorbing to the graphene's surface. This allows the production of aqueous suspensions, but removing the surfactant requires chemical treatments.


Immiscible liquids

Sonicating graphite at the interface of two
immiscible Miscibility () is the property of two chemical substance, substances to mix in all mixing ratio, proportions (that is, to fully dissolution (chemistry), dissolve in each other at any concentration), forming a homogeneity and heterogeneity, homoge ...
liquids, most notably
heptane Heptane or ''n''-heptane is the straight-chain alkane with the chemical formula H3C(CH2)5CH3 or C7H16. When used as a test fuel component in anti-knock test engines, a 100% heptane fuel is the zero point of the octane rating scale (the 100 point ...
and water, produced macro-scale graphene films. The graphene sheets are adsorbed to the high energy interface between the heptane and the water, where they are kept from restacking. The graphene remained at the interface even when exposed to force in excess of 300,000 g. The solvents may then be evaporated. The sheets are up to ~95% transparent and conductive.


Molten salts

Graphite particles can be corroded in molten salts to form a variety of carbon nanostructures including graphene. Hydrogen cations, dissolved in molten Lithium chloride, can be discharged on cathodically polarized graphite rods, which then intercalate into the graphite structure, peeling graphite to produce graphene. The graphene nanosheets produced displayed a single-crystalline structure with a lateral size of several hundred nanometers and a high degree of crystallinity and thermal stability.


Electrochemical synthesis

Electrochemical synthesis can exfoliate graphene. Varying a pulsed voltage controls thickness, flake area, number of defects and affects its properties. The process begins by bathing the graphite in a solvent for intercalation. The process can be tracked by monitoring the solution's transparency with an LED and photodiode.


Laser-Induced Graphene (LIG)

In 2014, a laser-based single-step scalable approach to graphene production was published by Professor James M. Tour's Research Group at Rice University. The technique directly converts the surface of commercial polymer films into porous three-dimensional graphene patterns, using a  
infrared laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The firs ...
. The sp3-carbon atoms were photothermally converted to sp2-carbon atoms by pulsed laser irradiation. The resulting material exhibits high electrical conductivity, and has been demonstrated in a variety of applications, including interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF cm−2 and power densities of ~9 mW cm−2. Laser-induced production of graphene is compatible with roll-to-roll manufacturing processes, and provides a highly-accessible route to flexible electronics, functional nanocomposites, and advanced energy storage devices. Furthermore, the technique has been extended to a wide variety of carbon sources, such as wood, paper, and cloth, and likewise, other wavelengths of lasers were also demonstrated to form graphene.


Laser-Induced Graphene Fibers (LIGF) and Laser-Induced Graphene Scrolls (LIGS)

In 2018, Professor James M. Tour's Research Group at Rice University published the synthesis of Laser-Induced Graphene Fibers and Laser-Induced Graphene Scrolls. The new morphologies, which were accessible through tuning of laser parameters, found applications in areas such as air filtration and functional nanocomposites.


Flash Joule Heating

In 2019, flash Joule heating (transient high-temperature electrothermal heating) was discovered to be a method to synthesize turbostratic graphene in bulk powder form. The method involves electrothermally converting various carbon sources, such as carbon black, coal, and food waste into micron-scale flakes of graphene. More recent works demonstrated the use of mixed plastic waste, waste rubber tires, and pyrolysis ash as carbon feedstocks. The graphenization process is kinetically controlled, and the energy dose is chosen to preserve the carbon in its graphenic state (excessive energy input leads to subsequent graphitization through annealing).


Hydrothermal self-assembly

Graphene has been prepared by using a sugar (e.g.
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using ...
,
fructose Fructose, or fruit sugar, is a Ketose, ketonic monosaccharide, simple sugar found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. It is one of the three dietary monosaccharides, along with glucose and galacto ...
, etc.) This substrate-free "bottom-up" synthesis is safer, simpler and more environmentally friendly than exfoliation. The method can control thickness, ranging from monolayer to multilayers.


Epitaxy

Epitaxy Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epit ...
refers to the deposition of a crystalline overlayer on a crystalline substrate, where there is registry between the two. In some cases epitaxial graphene layers are coupled to surfaces weakly enough (by
Van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
s) to retain the two dimensional
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or '' ...
of isolated graphene. An example of this weak coupling is epitaxial graphene on SiC and on Pt(111). On the other hand, the epitaxial graphene layer on some metals can be strongly bonded to the surface with
covalent bonds A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
. The properties of the covalently bonded graphene can differ from the ones of free-standing graphene. An example of this strong coupling is epitaxial graphene on Ru(0001). However, the coupling is strong only for the first graphene layer on Ru(0001): the second layer is more weakly coupled to the first layer and has already properties very close to the free standing graphene.


Chemical vapor deposition

Chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substra ...
(CVD) is a common form of epitaxy. The process of deposition of solid material onto a heated substrate through decomposition or chemical reaction of compounds contained in the gas passing over the substrate is called chemical vapor deposition. The reactants, generally in the gaseous or vapor phase, react on or near the surface of the substrates, which are at some elevated temperature. The subsequent reaction results in the deposition of atoms or molecules on the entire substrate surface. CVD processes are also widely used for growing epitaxial layers such as a silicon epitaxial layer on a single-crystal silicon substrate (homoepitaxy or commonly referred to as epitaxy) or epitaxial layer deposition on a sapphire (Heteroepitaxy). A special method in CVD, called Epitaxy or Epitaxial Layer Deposition or Vapor-Phase Epitaxy (VPE), has only a single-crystal form as the deposited layer. This process is usually carried out for certain combinations of substrate and layer materials and under special deposition conditions.


Epitaxy of graphene

Epitaxial graphene films can be grown on various crystalline surfaces. The atomic lattice of the substrate facilitate in orientationally registering the carbon atoms of the graphene layer. The chemical interaction of the graphene with the substrate can vary from weak to strong. This also modifies the properties of the graphene layer. The need for epitaxial graphene arises from the challenges of incorporating carbon nanotubes in large-scale integrated electronic architectures. Research on 2D graphene was thus initiated by experiments on epitaxially grown graphene on single crystal silicon carbide. While significant control has been in growing and characterizing epitaxial graphene, challenges remain in being able to fully exploit the potential of these structures. The promise lies in the hope that charge carriers on these graphene structures, like carbon nanotubes, remain ballistic. If so, it could revolutionize the world of electronics.


Silicon carbide

Heating
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder and crystal sin ...
(SiC) to high temperatures (>) under low pressures (~10−6 torr) reduces it to graphene. This process produces epitaxial graphene with dimensions dependent upon the size of the wafer. The polarity of the SiC used for graphene formation, silicon- or carbon-polar, highly influences the thickness, mobility and carrier density. Graphene's electronic band-structure (so-called Dirac cone structure) was first visualized in this material. Weak anti-localization is observed in this material, but not in exfoliated graphene produced by the drawing method. Large, temperature-independent mobilities approach those in exfoliated graphene placed on silicon oxide, but lower than mobilities in suspended graphene produced by the drawing method. Even without transfer, graphene on SiC exhibits massless Dirac fermions. The graphene–substrate interaction can be further passivated. The weak van der Waals force that coheres multilayer stacks does not always affect the individual layers' electronic properties. That is, while the electronic properties of certain multilayered epitaxial graphenes are identical to that of a single layer, other properties are affected, as they are in bulk graphite. This effect is well understood theoretically and is related to the symmetry of the interlayer interactions. Epitaxial graphene on SiC can be patterned using standard microelectronics methods. A band gap can be created and tuned by laser irradiation.


Silicon/germanium/hydrogen

A normal
silicon wafer In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serv ...
coated with a layer of
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
(Ge) dipped in dilute
hydrofluoric acid Hydrofluoric acid is a Solution (chemistry), solution of hydrogen fluoride (HF) in water. Solutions of HF are colourless, acidic and highly Corrosive substance, corrosive. It is used to make most fluorine-containing compounds; examples include th ...
strips the naturally forming
germanium oxide Germanium oxide may refer to: *Germanium dioxide, GeO2, the best known and most commonly encountered oxide of germanium containing germanium(IV) *Germanium monoxide Germanium monoxide, GeO, is a chemical compound of germanium and oxygen Oxy ...
groups, creating hydrogen-terminated germanium.
Chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substra ...
deposits a layer of graphene on top. The graphene can be peeled from the wafer using a dry process and is then ready for use. The wafer can be reused. The graphene is wrinkle-free, high quality and low in defects.


Metal single crystal substrates

Metal single crystals are often used as substrates in graphene growth since they form a smooth and chemically uniform growth platform for graphene. Especially, the chemical uniformity is an important advantage of metal single crystal surfaces: for example in different oxide surfaces the oxidized component and the oxygen forms very different adsorption sites. A typical metal single crystal substrate surface is
hexagonal close-packed In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occu ...
surface since this geometry is also the geometry of carbon atoms in a graphene layer. Common surfaces that have hexagonal close packed geometry are for example FCC(111) and HCP(0001) surfaces. Of course, the similar surface geometries alone do not ensure perfect graphene adsorption on the surface since the distances between surface metal atoms and carbon atoms can be different, resulting in moiré patterns. Common metal surfaces for graphene growth are Pt(111), Ir(111), Ni(111), Ru(0001), Co(0001) and Cu(111) but also at least Fe(110), Au(111), Pd(111), Re(101͊0) and Rh(111) have been used.


Preparation methods of metal single crystal substrates

There are several methods how good quality metal single crystal substrates can be manufactured. Czochralski and Bridgman–Stockbarger methods are common industrial methods for bulk metal crystal manufacturing. In these methods, the metal is first melted, after which the metal is let to crystallize around a seed crystal. After crystallization, the crystal is cut into wafers. Other commonly used method especially in research is epitaxy, which enables the growth of numerous different metal single crystal surfaces on some commonly available single crystals like monocrystalline silicon. The advantage of epitaxy over the industrial methods is its low material consumption: with epitaxy substrates with thickness in nanometer scale can be manufactured in comparison to complete self-supporting wafers. This is especially important with rare and expensive metals like rhenium and gold.


Ruthenium(0001)

Graphene can be grown on ruthenium(0001) surface with CVD, temperature programmed growth (TPG) or
segregation Segregation may refer to: Separation of people * Geographical segregation, rates of two or more populations which are not homogenous throughout a defined space * School segregation * Housing segregation * Racial segregation, separation of humans ...
. In CVD, a hot ruthenium surface is exposed for some carbon containing molecule like
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Eart ...
or
ethene Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon-carbon double bonds). Ethylene is ...
. This results in graphene formation. It has been observed that the graphene can grow only “downhill” of the ruthenium surface steps, not uphill. Graphene bonds strongly with
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
s to the surface and has only 1.45 Å separation to the surface. This affects the electronic structure of the graphene layer, and the layer behaves differently than a free-standing graphene layer. However, the CVD graphene growth on ruthenium is not totally self-terminating and multilayer graphene formation is possible. The second and higher layers cannot bond to the existing graphene layers as strongly as the first layer bonds to the metal surface, which results in higher 3 Å separation between the graphene layers. The second layer thus has much weaker interaction with the substrate and has very similar electronic properties as free-standing graphene. Due to the strong bonding of graphene on the ruthenium surface, only R0 orientation is observed for graphene layer. Although, different studies have shown different lengths for the moiré repeat distance, varying around Graphene(11 x 11) and Ru(10 x 10). The moiré pattern also causes strong corrugation for the graphene layer, peak height being as much as 1.5 Å.


Iridium(111)

Graphene is commonly deposited on iridium(111) by CVD but also with temperature programmed growth (TPG) is possible. In CVD, a hot iridium surface is exposed to
ethylene Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon-carbon double bonds). Ethylene i ...
. Ethylene decomposes on the surface due to pyrolysis, and the formed carbon adsorbs to the surface forming a graphene monolayer. Thus, only a monolayer growth is possible. The formed graphene layer is weakly bounded to the iridium substrate and is located about 3.3 Å above the surface. The graphene layer and the Ir(111) substrate also forms a moiré pattern with period around 25 Å, depending on the orientation of the graphene on Ir(111). There are many different possibilities for the graphene layer orientation, the most common ones being R0 and R30. The graphene layer has also corrugation due to the moiré pattern, with height varying from 0.04 Å to 0.3 Å. Due to the long-range order of these ripples, minigaps in the electronic band-structure (
Dirac cone Dirac cones, named after Paul Dirac, are features that occur in some electronic band structures that describe unusual electron transport properties of materials like graphene and topological insulators. In these materials, at energies near ...
) become visible.


Platinum(111)

Graphene sheets have been reported to be grown by dosing ethylene onto the clean, single platinum(111) substrate at temperatures above 1000 °C in
ultra-high vacuum Ultra-high vacuum (UHV) is the vacuum regime characterised by pressures lower than about . UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the mean free path of a gas molecule is greater than approximately ...
(UHV). Graphene monolayer interacts weakly with the Pt(111) surface below it confirmed by the
local density of states In solid state physics and condensed matter physics, the density of states (DOS) of a system describes the number of modes per unit frequency range. The density of states is defined as D(E) = N(E)/V , where N(E)\delta E is the number of states i ...
which is a ‘V’ shape. Kim et al., reported the electronic properties of the graphene nanoislands whose geometry is affected by varying the annealing temperatures and providing a fundamental understanding on graphene growth. The effect of annealing on the average size and density of graphene islands grown on Pt(111) has been widely studied. Sutter et al., reported a thermal-stress driven wrinkle propagation on the graphene sheet as observed from
low-energy electron microscopy Low-energy electron microscopy, or LEEM, is an analytical surface science technique used to image atomically clean surfaces, atom-surface interactions, and thin (crystalline) films. In LEEM, high-energy electrons (15-20 keV) are emitted from an el ...
during cooling after growth. The onset of lattice mismatch precedes the observation of moiré patterns with small (e.g., (3x3)G) and large unit cells (e.g., (8x8)G).


Nickel(111)

High-quality sheets of few-layer graphene exceeding in area have been synthesized via CVD on thin
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to ...
films using multiple techniques. First the film is exposed to
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
gas at 900–1000 degrees Celsius.
Methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Eart ...
is then mixed into the gas, and the methane's disassociated carbon is absorbed into the film. The solution is then cooled and the carbon diffuses out of the nickel to form graphene films. CVD grown graphene on Ni(111) surface forms (1 x 1) structure, i.e. the lattice constants of Ni and graphene matches and no moiré pattern is formed. There are still different possible adsorption sites for carbon atoms on nickel, at least top, hcp hollow, fcc hollow and bridge sites have been reported 7 Another method used temperatures compatible with conventional
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFE ...
processing, using a nickel-based alloy with a gold catalyst. This process dissolves carbon atoms inside a
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
melt at a certain temperature and then precipitates the dissolved carbon at lower temperatures as single layer graphene (SLG). The metal is first melted in contact with a carbon source, possibly a graphite crucible inside which the melt is carried out or graphite powder/chunks that are placed in the melt. Keeping the melt in contact with the carbon at a specific temperature dissolves the carbon atoms, saturating the melt based on the metal–carbon
binary phase diagram A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, volume, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous ...
. Lowering the temperature decreases carbon's solubility and the excess carbon precipitates onto the melt. The floating layer can be either skimmed or frozen for later removal. Using different morphology, including thick graphite, few layer graphene (FLG) and SLG were observed on metal substrate.
Raman spectroscopy Raman spectroscopy () (named after Indian physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman sp ...
proved that SLG had grown on nickel substrate. The SLG Raman spectrum featured no D and D′ band, indicating its pristine nature. Since nickel is not Raman active, direct Raman spectroscopy of graphene layers on top of the nickel is achievable. Another approach covered a sheet of silicon dioxide glass (the substrate) on one side with a nickel film. Graphene deposited via chemical vapor deposition formed into layers on both sides of the film, one on the exposed top side, and one on the underside, sandwiched between nickel and glass. Peeling the nickel and the top layer of graphene left an intervening layer of graphene on the glass. While the top graphene layer could be harvested from the foil as in earlier methods, the bottom layer was already in place on the glass. The quality and purity of the attached layer was not assessed.


Cobalt(0001)

Graphene on cobalt(0001) is grown similarly as on a Ni substrate. A Co(0001) film is first grown on a wolfram(110) substrate, following which chemical vapor deposition of
propylene Propylene, also known as propene, is an unsaturated organic compound with the chemical formula CH3CH=CH2. It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petrole ...
at 450 °C enables graphene growth on Co(0001). This results in a p(1x1) structure along with structures that indicated domains of graphene slightly rotated with respect to the Co lattice. Graphene structures grown on Co(0001) are found to be identical to those grown on Ni(111) upon structural and electronic characterization. Co(0001) is
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
but the graphene monolayer grown over was found to not diminish the spin polarization. Unlike its Ni(111) counterpart, graphene grown on Co(0001) does not show the
Rashba effect The Rashba effect, also called Bychkov–Rashba effect, is a momentum-dependent splitting of spin bands in bulk crystalsMore specifically, uniaxial noncentrosymmetric crystals. and low-dimensional condensed matter systems (such as heterostructure ...
.


Copper

Copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
foil, at room temperature and very low pressure and in the presence of small amounts of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Eart ...
produces high quality graphene. The growth automatically stops after a single layer forms. Arbitrarily large films can be created. The single layer growth is due to the low concentration of carbon in methane. The process is surface-based rather than relying on absorption into the metal and then diffusion of carbon into graphene layers on the surface. The room temperature process eliminates the need for postproduction steps and reduces production from a ten-hour/nine- to ten-step procedure to a single step that takes five minutes. A chemical reaction between the hydrogen plasma formed from the methane and ordinary air molecules in the chamber generates
cyano radical The cyano radical (or cyanido radical) is a radical with molecular formula CN, sometimes written •CN. The cyano radical was one of the first detected molecules in the interstellar medium, in 1938. Its detection and analysis was influential in ...
s—carbon–nitrogen molecules without electrons. These charged molecules scour away surface imperfections, providing a pristine substrate. The graphene deposits form lines that merge into each other, forming a seamless sheet that contributes to mechanical and electrical integrity. Larger
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ex ...
s such as
ethane Ethane ( , ) is an organic chemical compound with chemical formula . At standard temperature and pressure, ethane is a colorless, odorless gas. Like many hydrocarbons, ethane is isolated on an industrial scale from natural gas and as a petr ...
and
propane Propane () is a three-carbon alkane with the molecular formula . It is a gas at standard temperature and pressure, but compressible to a transportable liquid. A by-product of natural gas processing and petroleum refining, it is commonly used a ...
produce bilayer coatings. Atmospheric pressure CVD growth produces multilayer graphene on copper (similar to nickel). The material has fewer defects, which in higher temperature processes result from thermal expansion/contraction. Ballistic transport was observed in the resulting material.


Tin

Tin Tin is a chemical element with the symbol Sn (from la, stannum) and atomic number 50. Tin is a silvery-coloured metal. Tin is soft enough to be cut with little force and a bar of tin can be bent by hand with little effort. When bent, t ...
has been recently used for synthesis of graphene at 250 °C. Low-temperature as well as the transfer free graphene growth on substrates is the major concern of graphene research for its practical applications. The transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction has been achieved by tin.


Sodium ethoxide pyrolysis

Gram-quantities were produced by the reduction of
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an Alcohol (chemistry), alcohol with the chemical formula . Its formula can be also written as or (an ethyl ...
by
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable iso ...
metal, followed by
pyrolysis The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek-derived elements ''py ...
of the ethoxide product and washing with water to remove sodium salts.


Roll-to-roll

Large scale
roll-to-roll In the field of electronic devices, roll-to-roll processing, also known as web processing, reel-to-reel processing or R2R, is the process of creating electronic devices on a roll of flexible plastic, metal foil, or flexible glass. In other fields p ...
production of graphene based on chemical vapor deposition, was first demonstrated in 2010. In 2014 a two-step roll-to-roll manufacturing process was announced. The first roll-to-roll step produces the graphene via chemical vapor deposition, and the second step binds the graphene to a substrate. In 2018, researchers at MIT refined the roll-to-roll process, creating a promising way to produce large amounts of graphene.


Cold wall

Growing graphene in an industrial resistive-heating cold wall CVD system was claimed to produce graphene 100 times faster than conventional CVD systems, cuts costs by 99 percent and produce material with enhanced electronic qualities. Cold wall CVD technique can be used to study the underlying surface science involved in graphene nucleation and growth as it allows unprecedented control of process parameters like gas flow rates, temperature and pressure as demonstrated in a recent study. The study was carried out in a home-built vertical cold wall system utilizing resistive heating by passing direct current through the substrate. It provided conclusive insight into a typical surface-mediated nucleation and growth mechanism involved in two-dimensional materials grown using catalytic CVD under conditions sought out in the semiconductor industry.


Nanotube slicing

Graphene can be created by cutting open
carbon nanotube A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
s. In one such method multi-walled carbon nanotubes are cut open in solution by action of
potassium permanganate Potassium permanganate is an inorganic compound with the chemical formula KMnO4. It is a purplish-black crystalline salt, that dissolves in water as K+ and , an intensely pink to purple solution. Potassium permanganate is widely used in the c ...
and
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
. In another method graphene
nanoribbon Nanoribbon may refer to: * Graphene nanoribbons * Silicene nanoribbons * Boron nitride nanoribbons * Gallium(III) oxide nanoribbons * titanate nanoribbons - see titanium dioxide * Phosphorene nanoribbons {{Short pages monitor