A graphene antenna is a high-frequency antenna based on
graphene
Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. , a one atom thick two dimensional carbon crystal, designed to enhance radio communications. The unique structure of graphene would enable these enhancements. Ultimately, the choice of graphene for the basis of this nano antenna was due to the behavior of electrons.
Antenna
It would be unfeasible to simply reduce traditional metallic antennas to nano sizes, because they would require tremendously high frequencies to operate. Consequently, it would require a lot of power to operate them. Furthermore, electrons in these traditional metals are not very mobile at nano sizes and the necessary electromagnetic waves would not form. However, these limitations would not be an issue with graphene's unique capabilities. A flake of graphene has the potential to hold a series of metal electrodes. Consequently, it would be possible to develop an antenna from this material.
Electron behavior
Graphene has a unique structure, wherein, electrons are able to move with minimal resistance. This enables electricity to move at a much faster speed than in metal, which is used for current antennas. Furthermore, as the electrons oscillate, they create an electromagnetic wave atop the graphene layer, referred to as the
Surface plasmon polariton, surface plasmon polariton wave. This would enable the antenna to operate at the lower end of the terahertz frequency, which would be more efficient than the current copper based antennas. Ultimately, researchers envision that graphene will be able to break through the limitations of current antennas.
Properties
It has been estimated that speeds of up to terabits per second can be achieved using such a device. Traditional antennas would require very high frequencies to operate at nano scales, making it an unfeasible option. However, the unique slower movement of electrons in graphene would enable it to operate at lower frequencies making it a feasible option for a nano sized antenna.
Projects
Oak Ridge National Laboratory
Researchers from the
Department of Energy’s Oak Ridge National Laboratory (ORNL) have discovered a unique way to create an atomic antenna. Two sheets of graphene can be connected by a silicon wire that is approximately 0.1 nanometer in diameter. This is approximately 100 times smaller than current metal based wires, which can only be reduced to 50 nanometers. This silicon wire however, is a
plasmotic device, which would enable the formation of surface plasmon polariton waves required to operate this nano antenna.
Samsung
Samsung has funded $120,000 for research into the graphene antenna to a team of researchers from the
Georgia Institute of Technology
The Georgia Institute of Technology, commonly referred to as Georgia Tech or, in the state of Georgia, as Tech or The Institute, is a public research university and institute of technology in Atlanta, Georgia. Established in 1885, it is part of ...
and the
Polytechnic University of Catalonia
The Technical University of Catalonia ( ca, Universitat Politècnica de Catalunya, , es, link=no, Universidad Politécnica de Cataluña; UPC), currently referred to as BarcelonaTech, is the largest engineering university in Catalonia, Spai ...
. Their research has shown that graphene is a feasible material to make nano antennas with. They have simulated how the electrons would behave, and have confirmed that surface plasmon polariton waves should form. This wave is essential for the graphene antenna to operate at the low end of the terahertz range, making it more efficient than traditional antenna designs. Researchers are currently working on implementing their research, and finding a way to propagate the electromagnetic waves necessary to operate the antenna. Their findings were published in the IEEE Journal on Selected Areas in Communications.
University of Manchester
A collaboration between the
University of Manchester
, mottoeng = Knowledge, Wisdom, Humanity
, established = 2004 – University of Manchester Predecessor institutions: 1956 – UMIST (as university college; university 1994) 1904 – Victoria University of Manchester 1880 – Victoria Univer ...
and an industrial partner developed a new way to manufacture graphene antennas for
radio-frequency identification
Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder, a radio receiver and transmitter. When triggered by an electromag ...
. The antennas are paper-based, flexible and environmentally friendly. Their findings were published in Applied Physics Letters and are being commercialised by Graphene Security.
See also
*
Ian F. Akyildiz
*
Metal-insulator-graphene (MIG)
*
Nanoelectronics
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical pr ...
*
Nanowire
A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less ...
*
Optical rectenna
An optical rectenna is a rectenna (rectifying antenna) that works with visible or infrared light. A rectenna is a circuit containing an antenna and a diode, which turns electromagnetic waves into direct current electricity. While rectennas have l ...
References
External links
* {{cite news , url=https://www.technologyreview.com/s/511726/graphene-antennas-would-enable-terabit-wireless-downloads/ , title=Graphene Antennas Would Enable Terabit Wireless Downloads , first=David , last=Talbot , date=March 5, 2013 , work=MIT Technology Review
Graphene
Antennas
Nanoelectronics