In
cell biology
Cell biology (also cellular biology or cytology) is a branch of biology that studies the structure, function, and behavior of cells. All living organisms are made of cells. A cell is the basic unit of life that is responsible for the living and ...
, a granule is a small particle. It can be any structure barely visible by
light microscopy
Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of micr ...
. The term is most often used to describe a
secretory 440px
Secretion is the movement of material from one point to another, such as a secreted chemical substance from a cell or gland. In contrast, excretion is the removal of certain substances or waste products from a cell or organism. The classica ...
vesicle.
In leukocytes
A group of
leukocytes, called
granulocyte
Granulocytes are
cells in the innate immune system characterized by the presence of specific granules in their cytoplasm. Such granules distinguish them from the various agranulocytes. All myeloblastic granulocytes are polymorphonuclear. They ha ...
s, contain granules and play an important role in the
immune system. The granules of certain cells, such as
natural killer cell
Natural killer cells, also known as NK cells or large granular lymphocytes (LGL), are a type of cytotoxic lymphocyte critical to the innate immune system that belong to the rapidly expanding family of known innate lymphoid cells (ILC) and repres ...
s, contain components which can lead to the
lysis
Lysis ( ) is the breaking down of the membrane of a cell, often by viral, enzymic, or osmotic (that is, "lytic" ) mechanisms that compromise its integrity. A fluid containing the contents of lysed cells is called a ''lysate''. In molecular bio ...
of neighboring cells. The granules of leukocytes are classified as
azurophilic granules or
specific granules.
Leukocyte granules are released in response to immunological stimuli during a process known as
degranulation
Degranulation is a cellular process that releases antimicrobial cytotoxic or other molecules from secretory vesicles called granules found inside some cells. It is used by several different cells involved in the immune system, including granulo ...
.
In platelets
The granules of
platelets
Platelets, also called thrombocytes (from Greek θρόμβος, "clot" and κύτος, "cell"), are a component of blood whose function (along with the coagulation factors) is to react to bleeding from blood vessel injury by clumping, thereby ini ...
are classified as
dense granules and
alpha granule
Alpha granules, (α-granules) also known as platelet alpha-granules are a cellular component of platelets. Platelets contain different types of granules that perform different functions, and include alpha granules, dense granules, and lysosomes. ...
s.
α-Granules are unique to platelets and are the most abundant of the platelet granules, numbering 50–80 per platelet 2. These granules measure 200–500 nm in diameter and account for about 10% of platelet volume. They contain mainly proteins, both membrane-associated receptors (for example, αIIbβ3 and P-selectin) and soluble cargo (for example, platelet factor 4
F4and fibrinogen). Proteomic studies have identified more than 300 soluble proteins that are involved in a wide variety of functions, including hemostasis (for example, von Willebrand factor
WFand factor V), inflammation (for example, chemokines such as CXCL1 and interleukin-8), and wound healing (for example, vascular endothelial growth factor
EGF EGF may refer to:
* E.G.F., a Gabonese company
* East Grand Forks, Minnesota, a city
* East Garforth railway station in England
* Epidermal growth factor
* Equity Group Foundation, a Kenyan charity
* European Gendarmerie Force, a military unit of ...
and fibroblast growth factor
GF 3. The classic representation of α-granules as spherical organelles with a peripheral limiting membrane, a dense nucleoid, and progressively lucent peripheral zones on transmission electron microscopy is probably simplistic and may be in part a preparation artifact. Electron tomography with three-dimensional reconstruction of platelets is notable for a significant percentage of tubular α-granules that generally lack VWF 4. More recent work using transmission electron microscopy and freeze substitution dehydration of resting platelets shows that α-granules are ovoid with a generally homogeneous matrix and that tubes form from α-granules upon activation 5. Thus, whether or not there exists significant structural heterogeneity among α-granules remains to be completely resolved. α-Granule exocytosis is evaluated primarily by plasma membrane expression of P-selectin (CD62P) by flow cytometry or estimation of the release of PF4, VWF, or other granule cargos.
[ Text was copied from this source, which is available under ]
Creative Commons Attribution 4.0 International License
Dense granules (also known as δ-granules) are the second most abundant platelet granules, with 3–8 per platelet. They measure about 150 nm in diameter 2. These granules, unique to the platelets, are a subtype of lysosome-related organelles (LROs), a group that also includes melanosomes,
lamellar bodies of the type II alveolar cells, and lytic granules of cytotoxic T cells. Dense granules mainly contain bioactive amines (for example, serotonin and histamine), adenine nucleotides, polyphosphates, and pyrophosphates as well as high concentrations of cations, particularly calcium. These granules derive their name from their electron-dense appearance on whole mount electron microscopy, which results from their high cation concentrations . Dense granule exocytosis is typically evaluated by ADP/ATP release by using luciferase-based luminescence techniques, release of preloaded
3Hserotonin, or membrane expression of lysosome-associated membrane protein 2 (LAMP2) or CD63 by flow cytometry.
Other platelet granules have been described. Platelets contain about 1–3 lysosomes per platelet and peroxisomes, the platelet-specific function of which remains unclear. Lysosomal exocytosis is typically evaluated by estimation of released lysosomal enzymes such as beta hexosaminidase. An electron-dense granule defined by the presence of Toll-like receptor 9 (TLR9) and protein disulfide isomerase (PDI), termed the T granule, has also been described, although its existence remains controversial. PDI and other platelet-borne thiol isomerases have been reported to be packaged within a non-granular compartment derived from the megakaryocyte endoplasmic reticulum (ER), which may be associated with the dense tubular system.
Insulin granules in beta cells
A specific type of granule found in the
pancreas is an insulin granule.
Insulin
Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism o ...
is a hormone that helps to regulate the amount of glucose in the blood from getting too high, hyperglycemia, or too low, hypoglycemia.
Insulin granules are secretory granules, which can release their contents from the cell into the bloodstream. The
beta cells in the pancreas are responsible for the storage of insulin and release of it at appropriate times. The beta cells closely control the release, and use unusual mechanisms to do so.
Insulin granule maturation process
Immature insulin granules function as a sorting chamber during the maturation process listed below. Insulin and other insoluble granule components are kept within the granules. Other soluble proteins and granule parts then bud off from the immature granule in a clathrin-coated transport vesicle. The process of
proteolysis
Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called protease ...
, removes the unwanted parts from the secretory granule resulting in mature granules.
Insulin granules mature in three steps: (1) the lumen of the granule undergoes acidification, due to the acidic properties of a secretory granule; (2) proinsulin becomes insulin through the process of proteolysis. The endoproteases PC1/3 and PC2 aid in this transformation from proinsulin to insulin; and (3) the clathrin protein coat is removed.
Germline granules
In 1957, André and Rouiller first coined the term "
nuage".
[André J, Rouiller CH (1957) L'ultrastructure de la membrane nucléaire des ovocytes del l'araignée (Tegenaria domestica Clark). Proc European Conf Electron Microscopy, Stockholm 1956. Academic
Press, New York, pp 162 164] (French for "cloud"). Its
amorphous
In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal.
Etymology
The term comes from the Greek ''a'' ("wi ...
and fibrous structure occurred in drawings as early as in 1933 (Risley). Today, the nuage is accepted to represent a characteristic,
electrondense germ plasm organelle
In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
encapsulating the
cytoplasmic
In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. Th ...
face of the
nuclear envelope
The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material.
The nuclear envelope consists of two lipid bilayer membrane ...
of the cells destined to the
germline
In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They ...
fate. The same granular material is also known under various synonyms: ''dense bodies,
mitochondrial
A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is use ...
clouds, yolk nuclei, Balbiani bodies, perinuclear P granules in
Caenorhabditis elegans
''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (ro ...
, germinal granules in
Xenopus laevis,
chromatoid bodies in mice, and polar granules in
Drosophila''. Molecularly, the ''nuage'' is a tightly interwoven network of differentially localized
RNA-binding proteins, which in turn localize specific
mRNA species for differential storage, asymmetric segregation (as needed for
asymmetric cell division), differential splicing and/or translational control. The
germline
In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They ...
granules appear to be ancestral and universally conserved in the germlines of all
metazoan
phyla Phyla, the plural of ''phylum'', may refer to:
* Phylum, a biological taxon between Kingdom and Class
* by analogy, in linguistics, a large division of possibly related languages, or a major language family which is not subordinate to another
Phyl ...
.
Many germline granule components are part of the
piRNA pathway and function to repress
transposable elements.
Plant cells
Granules are one of the non-living
cell organelle of plant cell (the others-vacuole and
nucleoplasm). It serves as small container of starch in plant cell.
Starch
In
photosynthesis, plants use light energy to produce
glucose from
carbon dioxide. The glucose is stored mainly in the form of starch granules, in
plastid
The plastid (Greek: πλαστός; plastós: formed, molded – plural plastids) is a membrane-bound organelle found in the Cell (biology), cells of plants, algae, and some other eukaryotic organisms. They are considered to be intracellular endosy ...
s such as
chloroplast
A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
s and especially
amyloplasts. Toward the end of the growing season, starch accumulates in twigs of trees near the buds.
Fruit,
seeds,
rhizome
In botany and dendrology, a rhizome (; , ) is a modified subterranean plant stem that sends out roots and shoots from its nodes. Rhizomes are also called creeping rootstalks or just rootstalks. Rhizomes develop from axillary buds and grow hori ...
s, and
tubers store starch to prepare for the next growing season.
See also
*
Chromaffin granule
*
Kurloff cell
Kurloff cells (also known as Foà-Kurloff cells,) were described as mononuclear cells in the peripheral blood and organs of the guinea pig, capybara, paca, agouti and cavie. The Kurloff cell contains a characteristic proteoglycan-containing inclu ...
References
Cell anatomy
{{cell-biology-stub