Gold Nanorods
   HOME

TheInfoList



OR:

In nanotechnology, nanorods are one morphology of nanoscale objects. Each of their dimensions range from 1–100 nm. They may be synthesized from metals or semiconducting materials. Standard aspect ratios (length divided by width) are 3-5. Nanorods are produced by direct
chemical synthesis As a topic of chemistry, chemical synthesis (or combination) is the artificial execution of chemical reactions to obtain one or several products. This occurs by physical and chemical manipulations usually involving one or more reactions. In mod ...
. A combination of
ligand In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elec ...
s act as shape control agents and bond to different facets of the nanorod with different strengths. This allows different faces of the nanorod to grow at different rates, producing an elongated object. One potential application of nanorods is in display technologies, because the reflectivity of the rods can be changed by changing their orientation with an applied electric field. Another application is for microelectromechanical systems (MEMS). Nanorods, along with other noble metal nanoparticles, also function as theragnostic agents. Nanorods absorb in the near IR, and generate heat when excited with IR light. This property has led to the use of nanorods as cancer therapeutics. Nanorods can be conjugated with tumor targeting motifs and ingested. When a patient is exposed to IR light (which passes through body tissue), nanorods selectively taken up by tumor cells are locally heated, destroying only the cancerous tissue while leaving healthy cells intact. Nanorods based on semiconducting materials have also been investigated for application as energy harvesting and light emitting devices. In 2006, Ramanathan et al. demonstrated1 electric-field mediated tunable photoluminescence from ZnO nanorods, with potential for application as novel sources of near-ultraviolet radiation.


Synthesis


ZnO nanorods

Zinc oxide Zinc oxide is an inorganic compound with the formula . It is a white powder that is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, food supplements, rubbers, plastics, ceramics, glass, cement ...
(ZnO) nanorod, also known as
nanowire A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less ...
, has a direct
bandgap energy In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference ( ...
of 3.37 eV, which is similar to that of
GaN The word Gan or the initials GAN may refer to: Places *Gan, a component of Hebrew placenames literally meaning "garden" China * Gan River (Jiangxi) * Gan River (Inner Mongolia), * Gan County, in Jiangxi province * Gansu, abbreviated ''Gā ...
, and it has an excitation
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
of 60 meV. The optical bandgap of ZnO nanorod can be tuned by changing the
morphology Morphology, from the Greek and meaning "study of shape", may refer to: Disciplines * Morphology (archaeology), study of the shapes or forms of artifacts * Morphology (astronomy), study of the shape of astronomical objects such as nebulae, galaxies ...
, composition, size etc. Recent years, ZnO nanorods have been intensely used to fabricate nano-scale electronic devices, including
field effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs contro ...
, ultraviolet
photodetector Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or ...
,
Schottky diode The Schottky diode (named after the German physicist Walter H. Schottky), also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltag ...
, and ultra-bright
light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (co ...
(LED). Various methods have been developed to fabricate the single crystalline,
wurtzite Wurtzite is a zinc and iron sulfide mineral with the chemical formula , a less frequently encountered structural polymorph form of sphalerite. The iron content is variable up to eight percent.Palache, Charles, Harry Berman & Clifford Frondel (19 ...
ZnO nanorods. Among those methods, growing from vapor phase is the most developed approach. In a typical growth process, ZnO vapor is condensed onto a solid substrate. ZnO vapor can be generated by three methods: thermal evaporation, chemical reduction, and Vapor-Liquid-Solid (VLS) method. In the thermal evaporation method, commercial ZnO powder is mixed with SnO2 and evaporated by heating the mixture at elevated temperature. In the chemical reduction method, zinc vapor, generated by the reduction of ZnO, is transferred to the growth zone, followed by reoxidation to ZnO. The VLS process, originally proposed in 1964, is the most commonly used process to synthesize single crystalline ZnO nanorods. In a typical process, catalytic droplets are deposited on the substrate and the gas mixtures, including Zn vapor and a mixture of CO/CO2, react at the catalyst-substrate interface, followed by nucleation and growth. Typical metal catalysts involve
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
,
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow ...
, and
tin Tin is a chemical element with the symbol Sn (from la, stannum) and atomic number 50. Tin is a silvery-coloured metal. Tin is soft enough to be cut with little force and a bar of tin can be bent by hand with little effort. When bent, t ...
. ZnO nanowires are grown epitaxially on the substrate and assemble into monolayer arrays. Metal-organic chemical vapor deposition (
MOCVD Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. ...
) has also been recently developed. No catalyst is involved in this process and the growth temperature is at 400 ~500 °C, i.e. considerably milder conditions compared to the traditional vapor growth method. Moreover, metal oxide nanorods (ZnO, CuO, Fe2O3, V2O5, others) can be simply made by heating initial metal in air in a
thermal oxidation In microfabrication, thermal oxidation is a way to produce a thin layer of oxide (usually silicon dioxide) on the surface of a wafer. The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The ra ...
process. For example, to make a dense "carpet" of CuO nanorods it was found to be enough to heat Cu foil in air at 420 °C. Apart from these manufacturing schemes, ZnO nanorods and tubes can be fabricated by the combination of deep UV lithography, dry etch, and atomic layer deposition (ALD).


InGaN/GaN nanorods

InGaN Indium gallium nitride (InGaN, ) is a semiconductor material made of a mix of gallium nitride (GaN) and indium nitride (InN). It is a ternary group III/group V direct bandgap semiconductor. Its bandgap can be tuned by varying the amount of in ...
/
GaN The word Gan or the initials GAN may refer to: Places *Gan, a component of Hebrew placenames literally meaning "garden" China * Gan River (Jiangxi) * Gan River (Inner Mongolia), * Gan County, in Jiangxi province * Gansu, abbreviated ''Gā ...
nanorod array light-emitting diodes can be manufactured with dry etching or focused ion beam etching techniques. Such LEDs emit polarized blue or green light Three-dimensional nanorod structures have a larger emitting surface, which results in better efficiency and light emission compared to planar LEDs. Ink-printed quantum dot nanorod LED (QNED) displays are being researched by Samsung, with InGaN nanorod LEDs replacing the organic OLED layer in
QD-OLED A quantum dot display is a display device that uses quantum dots (QD), semiconductor nanocrystals which can produce pure monochromatic red, green, and blue light. ''Photo-emissive'' quantum dot particles are used in LCD backlights and/or displa ...
displays.


Gold nanorods

The seed-mediated growth method is the most common and achieved method for synthesizing high-quality gold nanorods. A typical growth protocol involves the addition of citrate-capped gold nanospheres, served as seeds, to the bulk HAuCl4 growth solution. The growth solution is obtained by the reduction of HAuCl4 with ascorbic acid in the presence of
cetyltrimethylammonium bromide Cetrimonium bromide ( C16H33)N(CH3)3r; cetyltrimethylammonium bromide; hexadecyltrimethylammonium bromide; CTAB) is a quaternary ammonium surfactant. It is one of the components of the topical antiseptic cetrimide. The cetrimonium (hexadecyltrim ...
(CTAB) surfactant and silver ions. Longer nanorods (up to an aspect ratio of 25) can be obtained in the absence of silver nitrate by use of a three-step addition procedure. In this protocol, seeds are sequentially added to growth solution in order to control the rate of heterogeneous deposition and thereby the rate of crystal growth. The shortcoming of this method is the formation of gold nanospheres, which requires non-trivial separations and cleanings. In one modifications of this method sodium citrate is replaced with a stronger CTAB stabilizer in the nucleation and growth procedures. Another improvement is to introduce silver ions to the growth solution, which results in the nanorods of aspect ratios less than five in greater than 90% yield. Silver, of a lower reduction potential than gold, can be reduced on the surface of the rods to form a monolayer by underpotential deposition. Here, silver deposition competes with that of gold, thereby retarding the growth rate of specific crystal facets, allowing for one-directional growth and rod formation. Another shortcoming of this method is the high toxicity of CTAB. Polymers, such as
Polyethylene glycol Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular we ...
(PEG),
Polyallylamine hydrochloride Polyallylamine hydrochloride (CAS No. 71550-12-4) is a cationic polyelectrolyte Polyelectrolytes are polymers whose repeating units bear an electrolyte group. Polycations and polyanions are polyelectrolytes. These groups dissociate in aqueous ...
(PAH) coating; dietary fibers, such as
chitosan Chitosan is a linear polysaccharide composed of randomly distributed β-(1→4)-linked D-glucosamine (deacetylated unit) and ''N''-acetyl-D-glucosamine (acetylated unit). It is made by treating the chitin shells of shrimp and other crustacean ...
; or biomolecules, such as phospholipids have been used to displace the CTAB out from the nanorod surface without affecting the stability has been reported.


Cation exchange

Cation exchange is a conventional but promising technique for new nanorod synthesis. Cation exchange transformations in nanorods are kinetically favorable and often shape-conserving. Compared to bulk crystal systems, the cation exchange of nanorods is million-times faster due to high surface area. Existing nanorods serve as templates to make a variety of nanorods that are not accessible in traditional wet-chemical synthesis. Furthermore, complexity can be added by partial transformation, making nanorod heterostructures.


See also

*
Nanowire A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less ...
*
Nanopillar Nanopillars is an emerging technology within the field of nanostructures. Nanopillars are pillar shaped nanostructures approximately 10 nanometers in diameter that can be grouped together in lattice like arrays. They are a type of metamaterial, whi ...
*
Aggregated diamond nanorod Aggregated diamond nanorods, or ADNRs, are a nanocrystalline form of diamond, also known as nanodiamond or hyperdiamond. Discovery Nanodiamond or hyperdiamond was produced by compression of graphite in 2003 by a group of researchers in Japa ...
*
Colloidal gold Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is usually either wine-red coloured (for spherical particles less than 100  nm) or blue/purple (for larger spherical particles ...
* nano


References


External links

{{Scholia
Nanorods show negative refraction in near-IR
(EE Times, December 5, 2005)

S. Ramanathan, S. Patibandla, S. Bandyopadhyay, J.D. Edwards, J. Anderson, J. Mater. Sci.: Mater. Electron 17, 651 (2006) Nanoparticles by morphology