Glossary Of Group Theory
   HOME

TheInfoList



OR:

A group is a set together with an
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
operation that admits an
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
and such that there exists an inverse for every element. Throughout this glossary, we use to denote the identity element of a group.


A


C


D


E


F


G


H


I


L


N


O


P


Q


R


S


T


Basic definitions

Both subgroups and normal subgroups of a given group form a
complete lattice In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum ( join) and an infimum ( meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For compariso ...
under inclusion of subsets; this property and some related results are described by the
lattice theorem In group theory, the correspondence theorem (also the lattice theorem,W.R. Scott: ''Group Theory'', Prentice Hall, 1964, p. 27. and variously and ambiguously the third and fourth isomorphism theorem ) states that if N is a normal subgroup o ...
. Kernel of a group homomorphism. It is the
preimage In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each ...
of the identity in the
codomain In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
of a group homomorphism. Every normal subgroup is the kernel of a group homomorphism and vice versa. Direct product,
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
, and
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol . There are two closely related concepts of semidirect product: * an ''inner'' sem ...
of groups. These are ways of combining groups to construct new groups; please refer to the corresponding links for explanation.


Types of groups

Finitely generated group In algebra, a finitely generated group is a group ''G'' that has some finite generating set ''S'' so that every element of ''G'' can be written as the combination (under the group operation) of finitely many elements of ''S'' and of inverses o ...
. If there exists a finite set such that , then is said to be finitely generated. If can be taken to have just one element, is a
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
of finite order, an infinite cyclic group, or possibly a group with just one element.
Simple group SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The d ...
. Simple groups are those groups having only and themselves as
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
s. The name is misleading because a simple group can in fact be very complex. An example is the
monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group; it has order :    : = 2463205976112133171923293 ...
, whose order is about 1054. Every finite group is built up from simple groups via group extensions, so the study of finite simple groups is central to the study of all finite groups. The finite simple groups are known and classified. The structure of any finite abelian group is relatively simple; every finite abelian group is the direct sum of cyclic p-groups. This can be extended to a complete classification of all finitely generated abelian groups, that is all abelian groups that are generated by a finite set. The situation is much more complicated for the non-abelian groups.
Free group In mathematics, the free group ''F'S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''− ...
. Given any set , one can define a group as the smallest group containing the
free semigroup In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero ...
of . The group consists of the finite strings (words) that can be composed by elements from , together with other elements that are necessary to form a group. Multiplication of strings is defined by concatenation, for instance . Every group is basically a factor group of a free group generated by . Refer to ''
Presentation of a group In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and ...
'' for more explanation. One can then ask
algorithm In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
ic questions about these presentations, such as: * Do these two presentations specify isomorphic groups?; or * Does this presentation specify the trivial group? The general case of this is the word problem, and several of these questions are in fact unsolvable by any general algorithm.
General linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
, denoted by , is the group of -by-
invertible matrices In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by a ...
, where the elements of the matrices are taken from a field {{math, ''F'' such as the real numbers or the complex numbers.
Group representation In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used ...
(not to be confused with the ''presentation'' of a group). A ''group representation'' is a homomorphism from a group to a general linear group. One basically tries to "represent" a given abstract group as a concrete group of invertible
matrices Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
, which is much easier to study.


See also

* Glossary of Lie groups and Lie algebras *
Glossary of ring theory Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject. For the items in commutative algebra (the theor ...
*
Composition series In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many na ...
* Normal series
Group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
Wikipedia glossaries using description lists