Gibbons–Hawking Space
   HOME

TheInfoList



OR:

In
mathematical physics Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the de ...
, a Gibbons–Hawking space, named after
Gary Gibbons Gary William Gibbons (born 1 July 1946) is a British theoretical physicist. Education Gibbons was born in Coulsdon, Surrey. He was educated at Purley County Grammar School and the University of Cambridge, where in 1969 he became a research ...
and
Stephen Hawking Stephen William Hawking (8January 194214March 2018) was an English theoretical physics, theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between ...
, is essentially a hyperkähler manifold with an extra
U(1) In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
symmetry. (In general, Gibbons–Hawking metrics are a subclass of hyperkähler metrics.) Gibbons–Hawking spaces, especially ambipolar ones, find an application in the study of
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
microstate geometries.


See also

* Gibbons–Hawking effect


References

{{DEFAULTSORT:Gibbons-Hawking space Structures on manifolds Complex manifolds Riemannian manifolds Algebraic geometry Stephen Hawking