Geomagnetically Induced Current
   HOME

TheInfoList



OR:

Geomagnetically induced currents (GIC) are
electrical current Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
s induced at the Earth's surface by rapid changes in the
geomagnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic fi ...
caused by
space weather Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the time varying conditions within the Solar System, including the solar wind, emphasizing the space surrounding the Earth, including conditions in the ma ...
events. GICs can affect the normal operation of long
electrical conductor In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. Electric current is gener ...
systems such as electric transmission grids and buried pipelines. The geomagnetic disturbances which induce GICs include
geomagnetic storm A geomagnetic storm, also known as a magnetic storm, is a temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave and/or cloud of magnetic field that interacts with the Earth's magnetic field. The disturbance that d ...
s and
substorm A substorm, sometimes referred to as a magnetospheric substorm or an auroral substorm, is a brief disturbance in the Earth's magnetosphere that causes energy to be released from the "tail" of the magnetosphere and injected into the high latitude ...
s where the most severe disturbances occur at high
geomagnetic latitude Geomagnetic latitude, or magnetic latitude (MLAT), is a parameter analogous to geographic latitude, except that, instead of being defined relative to the geographic poles, it is defined by the axis of the geomagnetic dipole, which can be accurately ...
s.


Background

The Earth's magnetic field varies over a wide range of timescales. The longer-term variations, typically occurring over decades to millennia, are predominantly the result of dynamo action in the Earth's core. Geomagnetic variations on timescales of seconds to years also occur, due to dynamic processes in the
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an ...
,
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynam ...
and
heliosphere The heliosphere is the magnetosphere, astrosphere and outermost atmospheric layer of the Sun. It takes the shape of a vast, bubble-like region of space. In plasma physics terms, it is the cavity formed by the Sun in the surrounding interstell ...
. These changes are ultimately tied to variations associated with the solar activity (or sunspot) cycle and are manifestations of space weather. The fact that the geomagnetic field does respond to solar conditions can be useful, for example, in investigating Earth structure using
magnetotellurics Magnetotellurics (MT) is an electromagnetic geophysical method for inferring the earth's subsurface electrical conductivity from measurements of natural geomagnetic and geoelectric field variation at the Earth's surface. Investigation depth ran ...
, but it also creates a hazard. This geomagnetic hazard is primarily a risk to technology under the Earth's protective atmospheric blanket.


Risk to infrastructure

A time-varying magnetic field external to the Earth induces
telluric current A telluric current (from Latin ''tellūs'', "earth"), or Earth current, This has a detailed history of observations as understood at the time. is an electric current which moves underground or through the sea. Telluric currents result from both na ...
s—electric currents in the conducting ground. These currents create a secondary (internal) magnetic field. As a consequence of
Faraday's law of induction Faraday's law of induction (briefly, Faraday's law) is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic inducti ...
, an electric field at the surface of the Earth is induced associated with time variations of the magnetic field. The surface electric field causes electrical currents, known as geomagnetically induced currents (GIC), to flow in any conducting structure, for example, a power or pipeline grid grounded in the Earth. This electric field, measured in V/km, acts as a voltage source across networks. Examples of conducting networks are electrical power transmission grids, oil and gas pipelines, non-fiber optic undersea communication cables, non-fiber optic telephone and telegraph networks and railways. GIC are often described as being quasi
direct current Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even ...
(DC), although the variation frequency of GIC is governed by the time variation of the electric field. For GIC to be a hazard to technology, the current has to be of a magnitude and occurrence frequency that makes the equipment susceptible to either immediate or cumulative damage. The size of the GIC in any network is governed by the electrical properties and the topology of the network. The largest magnetospheric-ionospheric current variations, resulting in the largest external magnetic field variations, occur during geomagnetic storms and it is then that the largest GIC occur. Significant variation periods are typically from seconds to about an hour, so the induction process involves the
upper mantle The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about under the oceans and about under the continents) and ends at the top of the lower mantle at . Temperatures range from appro ...
and
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust (geology), crust and the portion of the upper mantle (geology), mantle that behaves elastically on time sca ...
. Since the largest magnetic field variations are observed at higher magnetic latitudes, GIC have been regularly measured in Canadian, Finnish and Scandinavian power grids and pipelines since the 1970s. GIC of tens to hundreds of
ampere The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to elect ...
s have been recorded. GIC have also been recorded at mid-latitudes during major storms. There may even be a risk to low latitude areas, especially during a storm commencing suddenly because of the high, short-period rate of change of the field that occurs on the day side of the Earth. GIC were first observed on the emerging
electric telegraph Electrical telegraphs were point-to-point text messaging systems, primarily used from the 1840s until the late 20th century. It was the first electrical telecommunications system and the most widely used of a number of early messaging systems ...
network in 1847–8 during
Solar cycle 9 Solar cycle 9 was the ninth solar cycle since 1755, when extensive recording of solar sunspot activity began. The solar cycle lasted 12.4 years, beginning in July 1843 and ending in December 1855. The maximum smoothed sunspot number observed dur ...
. Technological change and the growth of conducting networks have made the significance of GIC greater in modern society. The technical considerations for undersea cables, telephone and telegraph networks and railways are similar. Fewer problems have been reported in the open literature, about these systems because efforts have been made to ensure resiliency.


In power grids

Modern
electric power transmission systems Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a ''transmission network''. This is ...
consist of generating plants inter-connected by electrical circuits that operate at fixed transmission voltages controlled at substations. The grid voltages employed are largely dependent on the path length between these substations and 200-700 kV system voltages are common. There is a trend towards using higher voltages and lower line resistances to reduce transmission losses over longer and longer path lengths. Low line resistances produce a situation favourable to the flow of GIC. Power transformers have a magnetic circuit that is disrupted by the quasi-DC GIC: the field produced by the GIC offsets the operating point of the magnetic circuit and the transformer may go into half-cycle
saturation Saturation, saturated, unsaturation or unsaturated may refer to: Chemistry * Saturation, a property of organic compounds referring to carbon-carbon bonds **Saturated and unsaturated compounds ** Degree of unsaturation **Saturated fat or fatty aci ...
. This produces
harmonics A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', the ...
in the AC waveform, localised heating and leads to higher
reactive power Reactive may refer to: *Generally, capable of having a reaction (disambiguation) *An adjective abbreviation denoting a bowling ball coverstock made of reactive resin *Reactivity (chemistry) *Reactive mind *Reactive programming See also *Reactanc ...
demands, inefficient power transmission and possible mis-operation of protective measures. Balancing the network in such situations requires significant additional reactive power capacity. The magnitude of GIC that will cause significant problems to transformers varies with transformer type. Modern industry practice is to specify GIC tolerance levels on new transformers. On 13 March 1989, a severe geomagnetic storm caused the collapse of the
Hydro-Québec power grid Hydro-Québec is a public utility that manages the generation, transmission and distribution of electricity in the Canadian province of Quebec, as well as the export of power to portions of the Northeast United States. It was established by the ...
in a matter of seconds as equipment
protective relay In electrical engineering, a protective relay is a relay device designed to trip a circuit breaker when a fault is detected. The first protective relays were electromagnetic devices, relying on coils operating on moving parts to provide detecti ...
s tripped in a cascading sequence of events. Six million people were left without power for nine hours, with significant economic loss. Since 1989, power companies in North America, the United Kingdom, Northern Europe, and elsewhere have invested in evaluating the GIC risk and in developing mitigation strategies. GIC risk can, to some extent, be reduced by capacitor blocking systems, maintenance schedule changes, additional on-demand generating capacity, and ultimately, load shedding. These options are expensive and sometimes impractical. The continued growth of high voltage power networks results in higher risk. This is partly due to the increase in the interconnectedness at higher voltages, connections in terms of power transmission to grids in the auroral zone, and grids operating closer to capacity than in the past. To understand the flow of GIC in power grids and to advise on GIC risk, analysis of the quasi-DC properties of the grid is necessary. This must be coupled with a geophysical model of the Earth that provides the driving surface electric field, determined by combining time-varying ionospheric source fields and a conductivity model of the Earth. Such analyses have been performed for North America, the UK and in Northern Europe. The complexity of power grids, the source ionospheric current systems and the 3D ground conductivity make an accurate analysis difficult. By being able to analyze major storms and their consequences we can build a picture of the weak spots in a transmission system and run hypothetical event scenarios. Grid management is also aided by space weather forecasts of major geomagnetic storms. This allows for mitigation strategies to be implemented. Solar observations provide a one- to three-day warning of an Earthbound
coronal mass ejection A coronal mass ejection (CME) is a significant release of plasma and accompanying magnetic field from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted ...
(CME), depending on CME speed. Following this, detection of the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sola ...
shock that precedes the CME in the solar wind, by spacecraft at the
Lagrangian point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the influence of two massive orbiting bodies. Mathematically, this involves the solution of th ...
, gives a definite 20 to 60 minutes warning of a geomagnetic storm (again depending on local solar wind speed). It takes approximately two to three days after a CME launches from the Sun for a geomagnetic storm to reach Earth and to affect the Earth's geomagnetic field.(NERC, 1990)


GIC hazard in pipelines

Major pipeline networks exist at all latitudes and many systems are on a continental scale. Pipeline networks are constructed from steel to contain high-pressure liquid or gas and have corrosion resistant coatings. Damage to the pipeline coating can result in the steel being exposed to the soil or water possibly causing localised corrosion. If the pipeline is buried,
cathodic protection Cathodic protection (CP; ) is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded "sacrific ...
is used to minimise corrosion by maintaining the steel at a negative potential with respect to the ground. The operating potential is determined from the electro-chemical properties of the soil and Earth in the vicinity of the pipeline. The GIC hazard to pipelines is that GIC cause swings in the pipe-to-soil potential, increasing the rate of corrosion during major geomagnetic storms (Gummow, 2002). GIC risk is not a risk of catastrophic failure, but a reduced service life of the pipeline. Pipeline networks are modeled in a similar manner to power grids, for example through distributed source transmission line models that provide the pipe-to-soil potential at any point along the pipe (Boteler, 1997; Pulkkinen et al., 2001). These models need to consider complicated pipeline topologies, including bends and branches, as well as electrical insulators (or flanges) that electrically isolate different sections. From a detailed knowledge of the pipeline response to GIC, pipeline engineers can understand the behaviour of the cathodic protection system even during a geomagnetic storm, when pipeline surveying and maintenance may be suspended.


See also

*
List of solar storms Solar storms of different types are caused by disturbances on the Sun, most often from coronal mass ejections (CMEs) and solar flares from active regions, or, less often, from coronal holes. Minor to active solar storms (i.e. storming restricted t ...
**
Solar storm of 1859 The Carrington Event was the most intense geomagnetic storm in recorded history, peaking from 1 to 2 September 1859 during solar cycle 10. It created strong auroral displays that were reported globally and caused sparking and even fires in mult ...
*
Aurora (astronomy) An aurora (plural: auroras or aurorae), also commonly known as the polar lights, is a natural light display in Earth's sky, predominantly seen in high-latitude regions (around the Arctic and Antarctic). Auroras display dynamic patterns of br ...


Footnotes and references


Further reading

* Bolduc, L., GIC observations and studies in the Hydro-Québec power system. J. Atmos. Sol. Terr. Phys., 64(16), 1793–1802, 2002. * Boteler, D. H., Distributed source transmission line theory for electromagnetic induction studies. In Supplement of the Proceedings of the 12th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility. pp. 401–408, 1997. * Boteler, D. H., Pirjola, R. J. and Nevanlinna, H., The effects of geomagnetic disturbances on electrical systems at the Earth's surface. Adv. Space. Res., 22(1), 17-27, 1998. * Erinmez, I. A., Kappenman, J. G. and Radasky, W. A., Management of the geomagnetically induced current risks on the national grid company's electric power transmission system. J. Atmos. Sol. Terr. Phys., 64(5-6), 743-756, 2002. * Gummow, R. A., GIC effects on pipeline corrosion and corrosion-control systems. J. Atmos. Sol. Terr. Phys., 64(16), 1755–1764, 2002. * Lanzerotti, L. J., Space weather effects on technologies. In Song, P., Singer, H. J., Siscoe, G. L. (eds.), Space Weather. American Geophysical Union, Geophysical Monograph, 125, pp. 11–22, 2001. * Lehtinen, M., and R. Pirjola, Currents produced in earthed conductor networks by geomagnetically-induced electric fields, Annales Geophysicae, 3, 4, 479-484, 1985. * Pirjola, R., Fundamentals about the flow of geomagnetically induced currents in a power system applicable to estimating space weather risks and designing remedies. J. Atmos. Sol. Terr. Phys., 64(18), 1967–1972, 2002. * Pirjola, R., Kauristie, K., Lappalainen, H. and Viljanen, A. and Pulkkinen A., Space weather risk. AGU Space Weather, 3, S02A02, , 2005. * Thomson, A. W. P., A. J. McKay, E. Clarke, and S. J. Reay, Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm, AGU Space Weather, 3, S11002, , 2005. * Pulkkinen, A., R. Pirjola, D. Boteler, A. Viljanen, and I. Yegorov, Modelling of space weather effects on pipelines, Journal of Applied Geophysics, 48, 233-256, 2001. * Pulkkinen, A. Geomagnetic Induction During Highly Disturbed Space Weather Conditions: Studies of Ground Effects, PhD thesis, University of Helsinki, 2003
(available at eThesis)
* Price, P.R., Geomagnetically induced current effects on transformers, IEEE Transactions on Power Delivery, 17, 4, 1002–1008, 2002,


External links


Solar Shield — experimental GIC forecasting system

Solar Terrestrial Dispatch — GIC warning distribution center

GICnow! Service by Finnish Meteorological Institute


* ttps://web.archive.org/web/20130605065914/http://eurisgic.org/ GIC measurements
Metatech Corporation's GIC site

Space Weather Canada
Power grid related links

* ttps://web.archive.org/web/20100325191721/http://www.economics.noaa.gov/?goal=commerce NOAA Economics -- Geomagnetic Storm datasets and Economic Research
Geomagnetic Storms Can Threaten Electric Power Grid GICs: The Bane of Technology-Dependent Societies
by Delores J. Knipp ( AGU) {{DEFAULTSORT:Geomagnetically Induced Current Exploration geophysics Geomagnetism Space physics Space weather