HOME

TheInfoList



OR:

The geologic temperature record are changes in
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surf ...
's
environment Environment most often refers to: __NOTOC__ * Natural environment, all living and non-living things occurring naturally * Biophysical environment, the physical and biological factors along with their chemical interactions that affect an organism or ...
as determined from geologic evidence on multi-million to billion (109) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.


Methodology

Evidence for past temperatures comes mainly from isotopic considerations (especially ); the Mg/Ca ratio of foram tests, and alkenones, are also useful. Often, many are used in conjunction to get a multi-proxy estimate for the temperature. This has proven crucial in studies on glacial/interglacial temperature.


Description of the temperature record


Pleistocene

The last 3 million years have been characterized by cycles of glacials and interglacials within a gradually deepening
ice age An ice age is a long period of reduction in the temperature of Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Earth's climate alternates between ice ages and gre ...
. Currently, the Earth is in an interglacial period, beginning about 20,000 years ago (20 kya). The cycles of glaciation involve the growth and retreat of continental ice sheets in the Northern Hemisphere and involve fluctuations on a number of time scales, notably on the 21 ky, 41 ky and 100 ky scales. Such cycles are usually interpreted as being driven by predictable changes in the Earth orbit known as Milankovitch cycles. At the beginning of the
Middle Pleistocene The Chibanian, widely known by its previous designation of Middle Pleistocene, is an Age (geology), age in the international geologic timescale or a Stage (stratigraphy), stage in chronostratigraphy, being a division of the Pleistocene Epoch withi ...
(0.8 million years ago, close to the Brunhes–Matuyama geomagnetic reversal) there has been a largely unexplained switch in the dominant periodicity of glaciations from the 41 ky to the 100 ky cycle. The gradual intensification of this ice age over the last 3 million years has been associated with declining concentrations of the
greenhouse gas A greenhouse gas (GHG or GhG) is a gas that absorbs and emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor (), carbon dioxide (), met ...
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
, though it remains unclear if this change is sufficiently large to have caused the changes in
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on ...
s. Decreased temperatures can cause a decrease in carbon dioxide as, by Henry's Law, carbon dioxide is more soluble in colder waters, which may account for 30ppmv of the 100ppmv decrease in carbon dioxide concentration during the last glacial maximum. Similarly, the initiation of this deepening phase also corresponds roughly to the closure of the
Isthmus of Panama The Isthmus of Panama ( es, Istmo de Panamá), also historically known as the Isthmus of Darien (), is the narrow strip of land that lies between the Caribbean Sea and the Pacific Ocean, linking North and South America. It contains the country ...
by the action of
plate tectonics Plate tectonics (from the la, label= Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large t ...
. This prevented direct ocean flow between the Pacific and Atlantic, which would have had significant effects on ocean circulation and the distribution of heat. However, modeling studies have been ambiguous as to whether this could be the direct cause of the intensification of the present ice age. This recent period of cycling climate is part of the more extended ice age that began about with the glaciation of
Antarctica Antarctica () is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean, it contains the geographic South Pole. Antarctica is the fifth-largest co ...
.


Initial Eocene thermal maxima

In the earliest part of the
Eocene The Eocene ( ) Epoch is a geological epoch that lasted from about 56 to 33.9 million years ago (mya). It is the second epoch of the Paleogene Period in the modern Cenozoic Era. The name ''Eocene'' comes from the Ancient Greek (''ēṓs'', " ...
period, a series of abrupt thermal spikes have been observed, lasting no more than a few hundred thousand years. The most pronounced of these, the Paleocene-Eocene Thermal Maximum (PETM) is visible in the figure at right. These are usually interpreted as caused by abrupt releases of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ear ...
from clathrates (frozen methane ices that accumulate at the bottom of the ocean), though some scientists dispute that methane would be sufficient to cause the observed changes. During these events, temperatures in the
Arctic Ocean The Arctic Ocean is the smallest and shallowest of the world's five major oceans. It spans an area of approximately and is known as the coldest of all the oceans. The International Hydrographic Organization (IHO) recognizes it as an ocean, ...
may have reached levels more typically associated with modern temperate (i.e. mid-latitude) oceans. During the PETM, the global mean temperature seems to have risen by as much as 5-8 °C (9-14 °F) to an average temperature as high as 23 °C (73 °F), in contrast to the global average temperature of today at just under 15 °C (60 °F). Geologists and paleontologists think that during much of the Paleocene and early Eocene, the poles were free of ice caps, and palm trees and crocodiles lived above the Arctic Circle, while much of the continental United States had a sub-tropical environment.


Cretaceous thermal optimum

During the later portion of the
Cretaceous The Cretaceous ( ) is a geological period that lasted from about 145 to 66 million years ago (Mya). It is the third and final period of the Mesozoic Era, as well as the longest. At around 79 million years, it is the longest geological period of ...
, from , average global temperatures reached their highest level during the last ~200 million years. This is likely to be the result of a favorable configuration of the continents during this period that allowed for improved circulation in the oceans and discouraged the formation of large scale ice sheet.


Fluctuations during the remainder of the Phanerozoic

The
Phanerozoic The Phanerozoic Eon is the current geologic eon in the geologic time scale, and the one during which abundant animal and plant life has existed. It covers 538.8 million years to the present, and it began with the Cambrian Period, when anima ...
eon, encompassing the last 542 million years and almost the entire time since the origination of complex multi-cellular life, has more generally been a period of fluctuating temperature between ice ages, such as the current age, and "
climate optima Climate is the long-term weather pattern in an area, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorological ...
", similar to what occurred in the Cretaceous. Roughly 4 such cycles have occurred during this time with an approximately 140 million year separation between climate optima. In addition to the present, ice ages have occurred during the
Permian The Permian ( ) is a geologic period and stratigraphic system which spans 47 million years from the end of the Carboniferous Period million years ago (Mya), to the beginning of the Triassic Period 251.9 Mya. It is the last period of the Pale ...
- Carboniferous interval and the late
Ordovician The Ordovician ( ) is a geologic period and system, the second of six periods of the Paleozoic Era. The Ordovician spans 41.6 million years from the end of the Cambrian Period million years ago (Mya) to the start of the Silurian Period Mya. ...
-early
Silurian The Silurian ( ) is a geologic period and system spanning 24.6 million years from the end of the Ordovician Period, at million years ago (Mya), to the beginning of the Devonian Period, Mya. The Silurian is the shortest period of the Paleozoi ...
. There is also a "cooler" interval during the
Jurassic The Jurassic ( ) is a Geological period, geologic period and System (stratigraphy), stratigraphic system that spanned from the end of the Triassic Period million years ago (Mya) to the beginning of the Cretaceous Period, approximately Mya. The J ...
and early Cretaceous, with evidence of increased sea ice, but the lack of continents at either pole during this interval prevented the formation of continental ice sheets and consequently this is usually not regarded as a full-fledged ice age. In between these cold periods, warmer conditions were present and often referred to as climate optima. However, it has been difficult to determine whether these warmer intervals were actually hotter or colder than occurred during the Cretaceous optima.


Late Proterozoic ice ages

The
Neoproterozoic The Neoproterozoic Era is the unit of geologic time from 1 billion to 538.8 million years ago. It is the last era of the Precambrian Supereon and the Proterozoic Eon; it is subdivided into the Tonian, Cryogenian, and Ediacaran periods. It is ...
era (), provides evidence of at least two and possibly more major glaciations. The more recent of these ice ages, encompassing the Marinoan & Varangian glacial maxima (about ), has been proposed as a snowball Earth event with continuous sea ice reaching nearly to the equator. This is significantly more severe than the ice age during the Phanerozoic. Because this ice age terminated only slightly before the rapid diversification of life during the Cambrian explosion, it has been proposed that this ice age (or at least its end) created conditions favorable to evolution. The earlier Sturtian glacial maxima (~730 million years) may also have been a snowball Earth event though this is unproven. The changes that lead to the initiation of snowball Earth events are not well known, but it has been argued that they necessarily led to their own end. The widespread sea ice prevents the deposition of fresh carbonates in ocean sediment. Since such carbonates are part of the natural process for recycling carbon dioxide, short-circuiting this process allows carbon dioxide to accumulate in the atmosphere. This increases the
greenhouse effect The greenhouse effect is a process that occurs when energy from a planet's host star goes through the planet's atmosphere and heats the planet's surface, but greenhouse gases in the atmosphere prevent some of the heat from returning directly ...
and eventually leads to higher temperatures and the retreat of sea ice.


Overall view

Direct combination of these interpreted geological temperature records is not necessarily valid, nor is their combination with other more recent temperature records, which may use different definitions. Nevertheless, an overall perspective is useful even when imprecise. In this view time is plotted backwards from the present, taken as 2015 CE. It is scaled ''linear'' in five separate segments, expanding by about an order of magnitude at each vertical break. Temperatures in the left-hand panel are very approximate, and best viewed as a qualitative indication only. Further information is given on the graph description page.


Other temperature changes in Earth's past

About , there was a period of climate stasis, also known as the Boring Billion. During this period there was hardly any tectonic activity, no glaciations and the atmosphere composition remained stable. It is bordered by two different oxygenation and glacial events. Temperature reconstructions based on oxygen and silicon isotopes from rock samples have predicted much hotter Precambrian sea temperatures. These predictions suggest ocean temperatures of 55–85 °C during the period of , followed by cooling to more mild temperatures of between 10-40 °C by . Reconstructed proteins from Precambrian organisms have also provided evidence that the ancient world was much warmer than today. However, other evidence suggests that the period of was generally colder and more glaciated than the last 500 million years. This is thought to be the result of
solar Solar may refer to: Astronomy * Of or relating to the Sun ** Solar telescope, a special purpose telescope used to observe the Sun ** A device that utilizes solar energy (e.g. "solar panels") ** Solar calendar, a calendar whose dates indicate t ...
radiation approximately 20% lower than today. Solar luminosity was 30% dimmer when the Earth formed 4.5 billion years ago, and it is expected to increase in luminosity approximately 10% per billion years in the future. On very long time scales, the evolution of the sun is also an important factor in determining Earth's climate. According to standard solar theories, the sun will gradually have increased in brightness as a natural part of its evolution after having started with an intensity approximately 70% of its modern value. The initially low solar radiation, if combined with modern values of greenhouse gases, would not have been sufficient to allow for liquid oceans on the surface of the Earth. However, evidence of liquid water at the surface has been demonstrated as far back as . This is known as the faint young sun paradox and is usually explained by invoking much larger greenhouse gas concentrations in Earth's early history, though such proposals are poorly constrained by existing experimental evidence.


See also

* Climate state *
Global warming In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate variability and change, Climate change in a broader sense also includes ...
* Global cooling * Instrumental temperature record * Ocean heat content * Satellite temperature measurements *
Sea surface temperature Sea surface temperature (SST), or ocean surface temperature, is the ocean temperature close to the surface. The exact meaning of ''surface'' varies according to the measurement method used, but it is between and below the sea surface. Air ma ...
* Thermal history of the Earth * Timeline of glaciation * List of periods and events in climate history


References

{{DEFAULTSORT:Geologic Temperature Record Historical geology Paleoclimatology Paleoceanography