Geodynamics (company)
   HOME

TheInfoList



OR:

Geodynamics is a subfield of geophysics dealing with dynamics of the Earth. It applies physics, chemistry and mathematics to the understanding of how
mantle convection Mantle convection is the very slow creeping motion of Earth's solid silicate mantle as convection currents carrying heat from the interior to the planet's surface. The Earth's surface lithosphere rides atop the asthenosphere and the two form ...
leads to plate tectonics and geologic phenomena such as seafloor spreading,
mountain building Mountain formation refers to the geological processes that underlie the formation of mountains. These processes are associated with large-scale movements of the Earth's crust (tectonic plates). Folding, faulting, volcanic activity, igneous intr ...
,
volcanoes A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates are ...
,
earthquakes An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, from ...
, faulting. It also attempts to probe the internal activity by measuring
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s, gravity, and seismic waves, as well as the
mineralogy Mineralogy is a subject of geology specializing in the scientific study of the chemistry, crystal structure, and physical (including optical) properties of minerals and mineralized artifacts. Specific studies within mineralogy include the proces ...
of rocks and their isotopic composition. Methods of geodynamics are also applied to exploration of other planets.


Overview

Geodynamics is generally concerned with processes that move materials throughout the Earth. In the
Earth's interior The internal structure of Earth is the solid portion of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust, a highly viscous asthenosphere and solid mantle, a liquid outer core whose ...
, movement happens when rocks
melt Melt may refer to: Science and technology * Melting, in physics, the process of heating a solid substance to a liquid * Melt (manufacturing), the semi-liquid material used in steelmaking and glassblowing * Melt (geology), magma ** Melt inclusions, ...
or deform and flow in response to a stress field.Turcotte, D. L. and G. Schubert (2014). "Geodynamics." This deformation may be brittle,
elastic Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rubber used to hold objects togeth ...
, or plastic, depending on the magnitude of the stress and the material's physical properties, especially the stress relaxation time scale. Rocks are structurally and compositionally heterogeneous and are subjected to variable stresses, so it is common to see different types of deformation in close spatial and temporal proximity. When working with geological timescales and lengths, it is convenient to use the continuous medium approximation and equilibrium stress fields to consider the average response to average stress. Experts in geodynamics commonly use data from geodetic
GPS The Global Positioning System (GPS), originally Navstar GPS, is a Radionavigation-satellite service, satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of t ...
, InSAR, and seismology, along with
numerical model Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be dete ...
s, to study the evolution of the Earth's
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust (geology), crust and the portion of the upper mantle (geology), mantle that behaves elastically on time sca ...
,
mantle A mantle is a piece of clothing, a type of cloak. Several other meanings are derived from that. Mantle may refer to: *Mantle (clothing), a cloak-like garment worn mainly by women as fashionable outerwear **Mantle (vesture), an Eastern Orthodox ve ...
and core. Work performed by geodynamicists may include: * Modeling brittle and ductile deformation of geologic materials * Predicting patterns of continental
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
and breakup of continents and supercontinents * Observing surface deformation and relaxation due to ice sheets and post-glacial rebound, and making related conjectures about the viscosity of the mantle * Finding and understanding the driving mechanisms behind plate tectonics.


Deformation of rocks

Rocks and other geological materials experience strain according to three distinct modes, elastic, plastic, and brittle depending on the properties of the material and the magnitude of the stress field. Stress is defined as the average force per unit area exerted on each part of the rock. Pressure is the part of stress that changes the volume of a solid; shear stress changes the shape. If there is no shear, the fluid is in hydrostatic equilibrium. Since, over long periods, rocks readily deform under pressure, the Earth is in hydrostatic equilibrium to a good approximation. The pressure on rock depends only on the weight of the rock above, and this depends on gravity and the density of the rock. In a body like the Moon, the density is almost constant, so a pressure profile is readily calculated. In the Earth, the compression of rocks with depth is significant, and an equation of state is needed to calculate changes in density of rock even when it is of uniform composition.


Elastic

Elastic deformation is always reversible, which means that if the stress field associated with elastic deformation is removed, the material will return to its previous state. Materials only behave elastically when the relative arrangement along the axis being considered of material components (e.g. atoms or crystals) remains unchanged. This means that the magnitude of the stress cannot exceed the yield strength of a material, and the time scale of the stress cannot approach the relaxation time of the material. If stress exceeds the yield strength of a material, bonds begin to break (and reform), which can lead to ductile or brittle deformation.Karato, Shun-ichiro (2008). "Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth."


Ductile

Ductile or plastic deformation happens when the temperature of a system is high enough so that a significant fraction of the material microstates (figure 1) are unbound, which means that a large fraction of the chemical bonds are in the process of being broken and reformed. During ductile deformation, this process of atomic rearrangement redistributes stress and strain towards equilibrium faster than they can accumulate. Examples include bending of the lithosphere under volcanic islands or sedimentary basins, and bending at oceanic trenches. Ductile deformation happens when transport processes such as diffusion and advection that rely on chemical bonds to be broken and reformed redistribute strain about as fast as it accumulates.


Brittle

When strain localizes faster than these relaxation processes can redistribute it,
brittle deformation In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic ...
occurs. The mechanism for brittle deformation involves a positive feedback between the accumulation or propagation of defects especially those produced by strain in areas of high strain, and the localization of strain along these dislocations and fractures. In other words, any fracture, however small, tends to focus strain at its leading edge, which causes the fracture to extend. In general, the mode of deformation is controlled not only by the amount of stress, but also by the distribution of strain and strain associated features. Whichever mode of deformation ultimately occurs is the result of a competition between processes that tend to localize strain, such as fracture propagation, and relaxational processes, such as annealing, that tend to delocalize strain.


Deformation structures

Structural geologists study the results of deformation, using observations of rock, especially the mode and geometry of deformation to reconstruct the stress field that affected the rock over time.
Structural geology Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformational histories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover informatio ...
is an important complement to geodynamics because it provides the most direct source of data about the movements of the Earth. Different modes of deformation result in distinct geological structures, e.g. brittle fracture in rocks or ductile folding.


Thermodynamics

The physical characteristics of rocks that control the rate and mode of strain, such as yield strength or viscosity, depend on the
thermodynamic state In thermodynamics, a thermodynamic state of a system is its condition at a specific time; that is, fully identified by values of a suitable set of parameters known as state variables, state parameters or thermodynamic variables. Once such a set o ...
of the rock and composition. The most important thermodynamic variables in this case are temperature and pressure. Both of these increase with depth, so to a first approximation the mode of deformation can be understood in terms of depth. Within the upper lithosphere, brittle deformation is common because under low pressure rocks have relatively low brittle strength, while at the same time low temperature reduces the likelihood of ductile flow. After the brittle-ductile transition zone, ductile deformation becomes dominant. Elastic deformation happens when the time scale of stress is shorter than the relaxation time for the material. Seismic waves are a common example of this type of deformation. At temperatures high enough to melt rocks, the ductile shear strength approaches zero, which is why shear mode elastic deformation (S-Waves) will not propagate through melts.


Forces

The main motive force behind stress in the Earth is provided by thermal energy from radioisotope decay, friction, and residual heat. Cooling at the surface and heat production within the Earth create a metastable thermal gradient from the hot core to the relatively cool lithosphere. This thermal energy is converted into mechanical energy by thermal expansion. Deeper and hotter rocks often have higher thermal expansion and lower density relative to overlying rocks. Conversely, rock that is cooled at the surface can become less buoyant than the rock below it. Eventually this can lead to a Rayleigh-Taylor instability (Figure 2), or interpenetration of rock on different sides of the buoyancy contrast. Negative thermal buoyancy of the oceanic plates is the primary cause of subduction and plate tectonics, while positive thermal buoyancy may lead to mantle plumes, which could explain intraplate volcanism. The relative importance of heat production vs. heat loss for buoyant convection throughout the whole Earth remains uncertain and understanding the details of buoyant convection is a key focus of geodynamics.


Methods

Geodynamics is a broad field which combines observations from many different types of geological study into a broad picture of the dynamics of Earth. Close to the surface of the Earth, data includes field observations, geodesy, radiometric dating,
petrology Petrology () is the branch of geology that studies rocks and the conditions under which they form. Petrology has three subdivisions: igneous, metamorphic, and sedimentary petrology. Igneous and metamorphic petrology are commonly taught together ...
, mineralogy, drilling boreholes and remote sensing techniques. However, beyond a few kilometers depth, most of these kinds of observations become impractical. Geologists studying the geodynamics of the mantle and core must rely entirely on remote sensing, especially seismology, and experimentally recreating the conditions found in the Earth in high pressure high temperature experiments.(see also
Adams–Williamson equation The Adams–Williamson equation, named after Leason H. Adams and E. D. Williamson, is an equation used to determine density as a function of radius, more commonly used to determine the relation between the velocities of seismic waves and the den ...
).


Numerical modeling

Because of the complexity of geological systems, computer modeling is used to test theoretical predictions about geodynamics using data from these sources. There are two main ways of geodynamic numerical modeling. # Modelling to reproduce a specific observation: This approach aims to answer what causes a specific state of a particular system. # Modelling to produce basic fluid dynamics: This approach aims to answer how a specific system works in general. Basic fluid dynamics modelling can further be subdivided into instantaneous studies, which aim to reproduce the instantaneous flow in a system due to a given buoyancy distribution, and time-dependent studies, which either aim to reproduce a possible evolution of a given initial condition over time or a statistical (quasi) steady-state of a given system.


See also

* * Cytherodynamics


References

;Bibliography * * *


External links


Geological Survey of Canada - Geodynamics ProgramGeodynamics Homepage - JPL/NASANASA Planetary geodynamicsLos Alamos National Laboratory–Geodynamics & National SecurityComputational Infrastructure for Geodynamics
{{Authority control Geophysics Geodesy Plate tectonics