In
algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, a generic point ''P'' of an
algebraic variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Mo ...
''X'' is, roughly speaking, a point at which all
generic properties are true, a generic property being a property which is true for
almost every
In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to ...
point.
In classical algebraic geometry, a generic point of an
affine
Affine may describe any of various topics concerned with connections or affinities.
It may refer to:
* Affine, a relative by marriage in law and anthropology
* Affine cipher, a special case of the more general substitution cipher
* Affine comb ...
or
projective algebraic variety
In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables wi ...
of dimension ''d'' is a point such that the field generated by its coordinates has
transcendence degree
In abstract algebra, the transcendence degree of a field extension ''L'' / ''K'' is a certain rather coarse measure of the "size" of the extension. Specifically, it is defined as the largest cardinality of an algebraically independent subset of ...
''d'' over the field generated by the coefficients of the equations of the variety.
In
scheme theory
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different sc ...
, the
spectrum
A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors i ...
of an
integral domain
In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural set ...
has a unique generic point, which is the zero ideal. As the closure of this point for the
Zariski topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is n ...
is the whole spectrum, the definition has been extended to
general topology
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geomet ...
, where a generic point of a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
''X'' is a point whose closure is ''X''.
Definition and motivation
A generic point of the topological space ''X'' is a point ''P'' whose
closure is all of ''X'', that is, a point that is
dense
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
in ''X''.
The terminology arises from the case of the
Zariski topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is n ...
on the set of
subvarieties
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Mo ...
of an
algebraic set
Algebraic may refer to any subject related to algebra in mathematics and related branches like algebraic number theory and algebraic topology. The word algebra itself has several meanings.
Algebraic may also refer to:
* Algebraic data type, a dat ...
: the algebraic set is
irreducible
In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole.
Emergence ...
(that is, it is not the union of two proper algebraic subsets) if and only if the topological space of the subvarieties has a generic point.
Examples
*The only
Hausdorff space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many ...
that has a generic point is the
singleton set
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0.
Properties
Within the framework of Zermelo–Fraenkel set theory, the ...
.
*Any
integral scheme
This is a glossary of algebraic geometry.
See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry.
...
has a (unique) generic point; in the case of an affine integral scheme (i.e., the
prime spectrum
In commutative algebra, the prime spectrum (or simply the spectrum) of a ring ''R'' is the set of all prime ideals of ''R'', and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with the ...
of an
integral domain
In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural set ...
) the generic point is the point associated to the prime ideal (0).
History
In the foundational approach of
André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was a founding member and the ''de facto'' early leader of the mathematical Bourbaki group. Th ...
, developed in his ''Foundations of Algebraic Geometry'', generic points played an important role, but were handled in a different manner. For an algebraic variety ''V'' over a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
''K'', ''generic points'' of ''V'' were a whole class of points of ''V'' taking values in a
universal domain
Universal is the adjective for universe.
Universal may also refer to:
Companies
* NBCUniversal, a media and entertainment company
** Universal Animation Studios, an American Animation studio, and a subsidiary of NBCUniversal
** Universal TV, a t ...
Ω, an
algebraically closed field
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in .
Examples
As an example, the field of real numbers is not algebraically closed, because ...
containing ''K'' but also an infinite supply of fresh indeterminates. This approach worked, without any need to deal directly with the topology of ''V'' (''K''-Zariski topology, that is), because the specializations could all be discussed at the field level (as in the
valuation theory In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inhe ...
approach to algebraic geometry, popular in the 1930s).
This was at a cost of there being a huge collection of equally generic points.
Oscar Zariski
, birth_date =
, birth_place = Kobrin, Russian Empire
, death_date =
, death_place = Brookline, Massachusetts, United States
, nationality = American
, field = Mathematics
, work_institutions = ...
, a colleague of Weil's at
São Paulo
São Paulo (, ; Portuguese for 'Saint Paul') is the most populous city in Brazil, and is the capital of the state of São Paulo, the most populous and wealthiest Brazilian state, located in the country's Southeast Region. Listed by the GaWC a ...
just after
World War II
World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposin ...
, always insisted that generic points should be unique. (This can be put back into topologists' terms: Weil's idea fails to give a
Kolmogorov space
In topology and related branches of mathematics, a topological space ''X'' is a T0 space or Kolmogorov space (named after Andrey Kolmogorov) if for every pair of distinct points of ''X'', at least one of them has a neighborhood not containing the ...
and Zariski thinks in terms of the
Kolmogorov quotient
In topology and related branches of mathematics, a topological space ''X'' is a T0 space or Kolmogorov space (named after Andrey Kolmogorov) if for every pair of distinct points of ''X'', at least one of them has a neighborhood not containing t ...
.)
In the rapid foundational changes of the 1950s Weil's approach became obsolete. In
scheme theory
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different sc ...
, though, from 1957, generic points returned: this time ''à la Zariski''. For example for ''R'' a
discrete valuation ring
In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.
This means a DVR is an integral domain ''R'' which satisfies any one of the following equivalent conditions:
# ''R'' ...
, ''Spec''(''R'') consists of two points, a generic point (coming from the
prime ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with ...
) and a closed point or special point coming from the unique
maximal ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals cont ...
. For morphisms to ''Spec''(''R''), the fiber above the special point is the special fiber, an important concept for example in
reduction modulo p,
monodromy theory
In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a Mathematical singularity, singularity. As the name implies, the funda ...
and other theories about degeneration. The generic fiber, equally, is the fiber above the generic point. Geometry of degeneration is largely then about the passage from generic to special fibers, or in other words how specialization of parameters affects matters. (For a discrete valuation ring the topological space in question is the
Sierpinski space of topologists. Other
local ring In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic num ...
s have unique generic and special points, but a more complicated spectrum, since they represent general dimensions. The discrete valuation case is much like the complex
unit disk
In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1:
:D_1(P) = \.\,
The closed unit disk around ''P'' is the set of points whose di ...
, for these purposes.)
References
*
*
{{refend
Algebraic geometry
General topology