In
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to
Newton's law of universal gravitation
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distanc ...
. It is named after
Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refe ...
. It states that the
flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ...
(
surface integral
In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, on ...
) of the
gravitational field over any closed surface is equal to the
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
enclosed. Gauss's law for gravity is often more convenient to work from than is Newton's law.
The form of Gauss's law for gravity is mathematically similar to
Gauss's law
In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it sta ...
for
electrostatics
Electrostatics is a branch of physics that studies electric charges at rest (static electricity).
Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for am ...
, one of
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.
Th ...
. Gauss's law for gravity has the same mathematical relation to Newton's law that Gauss's law for electrostatics bears to
Coulomb's law
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventio ...
. This is because both Newton's law and Coulomb's law describe
inverse-square interaction in a 3-dimensional space.
Qualitative statement of the law
The
gravitational field g (also called
gravitational acceleration
In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag (physics), drag). This is the steady gain in speed caused exclusively by the force of gravitational attract ...
) is a vector field – a vector at each point of space (and time). It is defined so that the gravitational force experienced by a particle is equal to the mass of the particle multiplied by the gravitational field at that point.
''Gravitational flux'' is a
surface integral
In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, on ...
of the gravitational field over a closed surface, analogous to how
magnetic flux is a surface integral of the magnetic field.
Gauss's law for gravity states:
:''The gravitational flux through any
closed surface is proportional to the enclosed
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
.''
Integral form
The integral form of Gauss's law for gravity states:
where
* (also written
) denotes a surface integral over a closed surface,
*∂''V'' is any closed surface (the ''boundary'' of an arbitrary volume ''V''),
*''d''A is a
vector
Vector most often refers to:
*Euclidean vector, a quantity with a magnitude and a direction
*Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematic ...
, whose magnitude is the area of an
infinitesimal piece of the surface ∂''V'', and whose direction is the outward-pointing
surface normal
In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve ...
(see
surface integral
In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, on ...
for more details),
*g is the
gravitational field,
*''G'' is the universal
gravitational constant, and
*''M'' is the total mass enclosed within the surface ∂''V''.
The left-hand side of this equation is called the
flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ...
of the gravitational field. Note that according to the law it is always negative (or zero), and never positive. This can be contrasted with
Gauss's law
In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it sta ...
for electricity, where the flux can be either positive or negative. The difference is because ''charge'' can be either positive or negative, while ''mass'' can only be positive.
Differential form
The differential form of Gauss's law for gravity states
where
denotes
divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of t ...
, ''G'' is the universal
gravitational constant, and ''ρ'' is the
mass density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
at each point.
Relation to the integral form
The two forms of Gauss's law for gravity are mathematically equivalent. The
divergence theorem states:
where ''V'' is a closed region bounded by a simple closed oriented surface ∂''V'' and ''dV'' is an infinitesimal piece of the volume ''V'' (see
volume integral
In mathematics (particularly multivariable calculus), a volume integral (∭) refers to an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many ...
for more details). The gravitational field g must be a
continuously differentiable
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
vector field defined on a neighborhood of ''V''.
Given also that
we can apply the divergence theorem to the integral form of Gauss's law for gravity, which becomes:
which can be rewritten:
This has to hold simultaneously for every possible volume ''V''; the only way this can happen is if the integrands are equal. Hence we arrive at
which is the differential form of Gauss's law for gravity.
It is possible to derive the integral form from the differential form using the reverse of this method.
Although the two forms are equivalent, one or the other might be more convenient to use in a particular computation.
Relation to Newton's law
Deriving Gauss's law from Newton's law
Gauss's law for gravity can be derived from
Newton's law of universal gravitation
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distanc ...
, which states that the gravitational field due to a
point mass
A point particle (ideal particle or point-like particle, often spelled pointlike particle) is an idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension; being dimensionless, it does not take up ...
is:
where
*e
r is the radial
unit vector
In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat").
The term ''direction ve ...
,
*''r'' is the radius, , r, .
*''M'' is the mass of the particle, which is assumed to be a
point mass
A point particle (ideal particle or point-like particle, often spelled pointlike particle) is an idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension; being dimensionless, it does not take up ...
located at the
origin
Origin(s) or The Origin may refer to:
Arts, entertainment, and media
Comics and manga
* ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002
* ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
.
A proof using vector calculus is shown in the box below. It is mathematically identical to the proof of
Gauss's law
In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it sta ...
(in
electrostatics
Electrostatics is a branch of physics that studies electric charges at rest (static electricity).
Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for am ...
) starting from
Coulomb's law
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventio ...
.
[
]
Deriving Newton's law from Gauss's law and irrotationality
It is impossible to mathematically prove Newton's law from Gauss's law ''alone'', because Gauss's law specifies the divergence of g but does not contain any information regarding the curl of g (see Helmholtz decomposition
In physics and mathematics, in the area of vector calculus, Helmholtz's theorem, also known as the fundamental theorem of vector calculus, states that any sufficiently smooth, rapidly decaying vector field in three dimensions can be resolved in ...
). In addition to Gauss's law, the assumption is used that g is irrotational
In vector calculus, a conservative vector field is a vector field that is the gradient of some function (mathematics), function. A conservative vector field has the property that its line integral is path independent; the choice of any path betwee ...
(has zero curl), as gravity is a conservative force
In physics, a conservative force is a force with the property that the total work done in moving a particle between two points is independent of the path taken. Equivalently, if a particle travels in a closed loop, the total work done (the sum ...
:
:
Even these are not enough: Boundary conditions on g are also necessary to prove Newton's law, such as the assumption that the field is zero infinitely far from a mass.
The proof of Newton's law from these assumptions is as follows:
Poisson's equation and gravitational potential
Since the gravitational field has zero curl (equivalently, gravity is a conservative force
In physics, a conservative force is a force with the property that the total work done in moving a particle between two points is independent of the path taken. Equivalently, if a particle travels in a closed loop, the total work done (the sum ...
) as mentioned above, it can be written as the gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
of a scalar potential
In mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in trav ...
, called the gravitational potential
In classical mechanics, the gravitational potential at a location is equal to the work ( energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electr ...
:
Then the differential form of Gauss's law for gravity becomes Poisson's equation
Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with t ...
:
This provides an alternate means of calculating the gravitational potential and gravitational field. Although computing g via Poisson's equation is mathematically equivalent to computing g directly from Gauss's law, one or the other approach may be an easier computation in a given situation.
In radially symmetric systems, the gravitational potential is a function of only one variable (namely, ), and Poisson's equation becomes (see Del in cylindrical and spherical coordinates):
while the gravitational field is:
When solving the equation it should be taken into account that in the case of finite densities ∂''ϕ''/∂''r'' has to be continuous at boundaries (discontinuities of the density), and zero for .
Applications
Gauss's law can be used to easily derive the gravitational field in certain cases where a direct application of Newton's law would be more difficult (but not impossible). See the article Gaussian surface for more details on how these derivations are done. Three such applications are as follows:
Bouguer plate
We can conclude (by using a " Gaussian pillbox") that for an infinite, flat plate ( Bouguer plate) of any finite thickness, the gravitational field outside the plate is perpendicular to the plate, towards it, with magnitude 2''πG'' times the mass per unit area, independent of the distance to the plateThe mechanics problem solver, by Fogiel, pp 535–536
/ref> (see also gravity anomalies
The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity meas ...
).
More generally, for a mass distribution with the density depending on one Cartesian coordinate ''z'' only, gravity for any ''z'' is 2''πG'' times the difference in mass per unit area on either side of this ''z'' value.
In particular, a parallel combination of two parallel infinite plates of equal mass per unit area produces no gravitational field between them.
Cylindrically symmetric mass distribution
In the case of an infinite uniform (in ''z'') cylindrically symmetric mass distribution we can conclude (by using a cylindrical Gaussian surface) that the field strength at a distance ''r'' from the center is inward with a magnitude of 2''G''/''r'' times the total mass per unit length at a smaller distance (from the axis), regardless of any masses at a larger distance.
For example, inside an infinite uniform hollow cylinder, the field is zero.
Spherically symmetric mass distribution
In the case of a spherically symmetric mass distribution we can conclude (by using a spherical Gaussian surface) that the field strength at a distance ''r'' from the center is inward with a magnitude of ''G''/''r''2 times only the total mass within a smaller distance than ''r''. All the mass at a greater distance than ''r'' from the center has no resultant effect.
For example, a hollow sphere does not produce any net gravity inside. The gravitational field inside is the same as if the hollow sphere were not there (i.e. the resultant field is that of all masses not including the sphere, which can be inside and outside the sphere).
Although this follows in one or two lines of algebra from Gauss's law for gravity, it took Isaac Newton several pages of cumbersome calculus to derive it directly using his law of gravity; see the article shell theorem
In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to objects inside or outside a spherically symmetrical body. This theorem has particular application to astronomy.
Isaac Newton proved the shell t ...
for this direct derivation.
Derivation from Lagrangian
The Lagrangian density
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
for Newtonian gravity is
Applying Hamilton's principle to this Lagrangian, the result is Gauss's law for gravity:
See Lagrangian (field theory)
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
for details.
See also
*Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refe ...
* Divergence theorem
*Gauss's law
In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it sta ...
for electricity
*Gauss's law for magnetism
In physics, Gauss's law for magnetism is one of the four Maxwell's equations that underlie classical electrodynamics. It states that the magnetic field has divergence equal to zero, in other words, that it is a solenoidal vector field. It ...
* Vector calculus
*Integral
In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
*Flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ...
* Gaussian surface
References
Further reading
*For usage of the term "Gauss's law for gravity" see, for example,
{{Carl Friedrich Gauss
Gravity
Theories of gravity
Vector calculus
Gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
Newtonian gravity