HOME

TheInfoList



OR:

Gate capacitance is the
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
of the gate terminal of a
field-effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs contro ...
. It can be expressed as the absolute capacitance of the gate of a transistor, or as the capacitance per unit area of an
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
technology, or as the capacitance per unit width of minimum-length transistors in a technology. In generations of approximately
Dennard scaling Dennard scaling, also known as MOSFET scaling, is a scaling law which states roughly that, as transistors get smaller, their power density stays constant, so that the power use stays in proportion with area; both voltage and current scale (downward) ...
of
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
s, the capacitance per unit area has increased inversely with device dimensions. Since the gate area has gone down by the square of device dimensions, the gate capacitance of a transistor has gone down in direct proportion with device dimensions. With Dennard scaling, the capacitance per unit of gate width has remained approximately constant; this measurement can include gate–source and gate–drain overlap capacitances. Other scalings are not uncommon; the voltages and gate oxide thicknesses have not always decreased as rapidly as device dimensions, so the gate capacitance per unit area has not increased as fast, and the capacitance per transistor width has sometimes decreased over generations. The intrinsic gate capacitance (that is, ignoring fringing fields and other details) for a silicon-dioxide-insulated gate can be calculated from thin-oxide capacitance per unit area as: : C _ = A_C_ where A_ is the gate area, and the thin-oxide capacitance per unit area is C_ = \frac, with \epsilon_ = 3.9 the
relative permittivity The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulat ...
of silicon dioxide, \epsilon_0 = 8.854\times10^\ \mathrm the
vacuum permittivity Vacuum permittivity, commonly denoted (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric consta ...
, and t_ the oxide thickness.


References

{{tech-stub Semiconductor technology