HOME

TheInfoList



OR:

Glutamate receptor, ionotropic, kainate 1, also known as GRIK1, is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
that in humans is encoded by the ''GRIK1''
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
.


Function

This gene encodes one of the many ionotropic
glutamate receptor Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system a ...
(GluR) subunits that function as a
ligand-gated ion channel Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
. The specific GluR subunit encoded by this gene is of the
kainate receptor Kainate receptors, or kainic acid receptors (KARs), are ionotropic receptors that respond to the neurotransmitter glutamate. They were first identified as a distinct receptor type through their selective activation by the agonist kainate, a drug ...
subtype. Receptor assembly and intracellular trafficking of ionotropic glutamate receptors are regulated by RNA editing and
alternative splicing Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to code for multiple proteins. In this process, particular exons of a gene may be ...
. These receptors mediate excitatory
neurotransmission Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), ...
and are critical for normal synaptic function. Two alternatively spliced transcript variants that encode different isoforms have been described. Exons of this gene are interspersed with exons from the C21orf41 gene, which is transcribed in the same orientation as this gene but does not seem to encode a protein.


Interactions

GRIK1 has been shown to
interact Advocates for Informed Choice, dba interACT or interACT Advocates for Intersex Youth, is a 501(c)(3) nonprofit organization using innovative strategies to advocate for the legal and human rights of children with intersex traits. The organizati ...
with
DLG4 PSD-95 (postsynaptic density protein 95) also known as SAP-90 (synapse-associated protein 90) is a protein that in humans is encoded by the ''DLG4'' (discs large homolog 4) gene. PSD-95 is a member of the membrane-associated guanylate kinase (MAG ...
,
PICK1 Protein Interacting with C Kinase - 1 is a protein that in humans is encoded by the ''PICK1'' gene. Function The protein encoded by this gene contains a PDZ domain, through which it interacts with protein kinase C, alpha (PRKCA). This protein m ...
and
SDCBP Syntenin-1 is a protein that in humans is encoded by the ''SDCBP'' gene. Function The protein encoded by this gene was initially identified as a molecule linking syndecan-mediated signaling to the cytoskeleton. The syntenin protein contains ta ...
.


RNA editing


Type

A to I RNA editing is catalyzed by a family of adenosine deaminases acting on RNA (ADARs) that specifically recognize adenosines within double-stranded regions of pre-mRNAs and deaminate them to inosine. Inosines are recognised as guanosine by the cells translational machinery. There are three members of the ADAR family ADARs 1-3, with ADAR1 and ADAR2 being the only enzymatically active members. ADAR3 is thought to have a regulatory role in the brain. ADAR1 and ADAR2 are widely expressed in tissues, whereas ADAR3 is restricted to the brain. The double-stranded regions of RNA are formed by base-pairing between residues in the close to region of the editing site, with residues usually in a neighboring intron, but can be an exonic sequence. The region that base-pairs with the editing region is known as an Editing Complementary Sequence (ECS). ADARs bind interact directly with the dsRNA substrate via their double-stranded RNA binding domains. If an editing site occurs within a coding sequence, the result could be a codon change. This can lead to translation of a protein isoform due to a change in its primary protein structure. Therefore, editing can also alter protein function. A to I editing occurs in a noncoding RNA sequences such as introns, untranslated regions (UTRs), LINEs, SINEs( especially Alu repeats). The function of A to I editing in these regions is thought to involve creation of splice sites and retention of RNAs in the nucleus, among others.


Location

The pre-mRNA of GluR-5 is edited at one position at the Q/R site located at membrane region 2 (M2). There is a codon change as a result of editing. The codon change is (CAG) Glutamine (Q) to (CGG) an Arginine (R). Like GluR-6 the ECS is located about 2000 nucleotides downstream of the editing site.


Regulation

Editing of the Q/R site is development- and tissue-regulated. Editing in the spinal cord, corpus callosum, cerebellum is 50%, while editing in the Thalamus, amygdala, hippocampus is about 70%.


Consequences


Structure

Editing results in a change in amino acid in the second membrane domain of the receptor.


Function

The editing site is found within the second intracellular domain. It is thought that editing affects the permeability of the receptor to CA2+. Editing of the Q/R site is thought to reduce the permeability of the channel to Ca2+ RNA editing of the Q/R site can effect inhibition of the channel by membrane fatty acids such as
arachidonic acid Arachidonic acid (AA, sometimes ARA) is a polyunsaturated omega-6 fatty acid 20:4(ω-6), or 20:4(5,8,11,14). It is structurally related to the saturated arachidic acid found in cupuaçu butter. Its name derives from the New Latin word ''arachi ...
and
docosahexaenoic acid Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is a primary structural component of the human brain, cerebral cortex, skin, and retina. In physiological literature, it is given the name 22:6(n-3). It can be synthesized from alpha-lino ...
For Kainate receptors with only edited isforms, these are strongly inhibited by these fatty acids. However, inclusion of just one nonedited subunit is enough to stop this inhibition(.


See also

*
Kainate receptor Kainate receptors, or kainic acid receptors (KARs), are ionotropic receptors that respond to the neurotransmitter glutamate. They were first identified as a distinct receptor type through their selective activation by the agonist kainate, a drug ...
* GRIK1 RNA editing


References


Further reading

* * * * * * * * * * * * * * * * * * * *


External links

* {{Ligand-gated ion channels Ionotropic glutamate receptors