G-jitter
   HOME

TheInfoList



OR:

G-jitter references forms of periodic or quasisteady residual acceleration encountered in a spacecraft floating through the
micro-gravity The term micro-g environment (also μg, often referred to by the term microgravity) is more or less synonymous with the terms ''weightlessness'' and ''zero-g'', but emphasising that g-forces are never exactly zero—just very small (on the ...
confines of space. Such variations slightly change the orientation and magnitude of a
body force In physics, a body force is a force that acts throughout the volume of a body. Springer site - Book 'Solid mechanics'preview paragraph 'Body forces'./ref> Forces due to gravity, electric fields and magnetic fields are examples of body forces. Bo ...
in a low-gravity testing environment,Nelson, Emily S. "An examination of anticipated g-jitter on space station and its effects on materials processes." (1994). https://ntrs.nasa.gov/search.jsp?R=19950006290 which can either marginally or gravely affect the result of precision-heavy dependent experiments conducted on board a space station. These accelerations are often the result of routine crew activity and equipment operation and the aerodynamic and aeromechanical forces on the spacecraft itself. Using current theoretical methods and previously collected experimental data, it is impossible to predict the exact behavior of a g-jitter acceleration, but with the aforementioned data, it is possible to notice and account for qualitative trends that hold true for most scenarios pertaining to material science testing on board a space station.


Sources of G-jitter


Quasi-steady forces

Constant forces that last over 10 minutes while varying periodically in a single frequency can provide a noticeable offset in acceleration readings and deviate a testing environment from "true" micro-gravity. The stronger set of these forces result in non-negligible
tidal acceleration Tidal acceleration is an effect of the tidal forces between an orbiting natural satellite (e.g. the Moon) and the primary planet that it orbits (e.g. Earth). The acceleration causes a gradual recession of a satellite in a prograde orbit away f ...
s and the varying aerodynamic drag of the space station, which fluctuates over the course of an orbit due to the changes in the space station's aspect angle,
diurnal cycle A diurnal cycle (or diel cycle) is any pattern that recurs every 24 hours as a result of one full rotation of the planet Earth around its axis. Earth's rotation causes surface temperature fluctuations throughout the day and night, as well as we ...
, and variable
solar activity Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. These phenomena take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots. These phenomena are ...
. In some fringe cases, Euler accelerations must be accounted for as they affect low-pressure physical vapor transport. Coriolis accelerations and solar radiation pressure can be also observed, but are generally negligible in comparison to the effects of other quasi-steady forces.


Oscillatory disturbances

Generally, if a disturbance can be replicated by a sinusoidal modulation, it is considered to be an oscillatory component of g-jitter. The most noticeable disturbances being routine crew activity and structural vibrations, and can cause a structural resonance throughout a space vehicle. While the average frequency of the structural
vibration Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin ''vibrationem'' ("shaking, brandishing"). The oscillations may be periodic, such as the motion of a pendulum—or random, su ...
of a space station is lesser than a
Space Shuttle orbiter The Space Shuttle orbiter is the spaceplane component of the Space Shuttle, a partially reusable orbital spacecraft system that was part of the discontinued Space Shuttle program. Operated from 1977 to 2011 by NASA, the U.S. space agency, thi ...
, the frequency range can still be between the ranges of 0.1 to 1 Hz.


Transient disturbances

The largest in magnitude are likely to be caused by thruster firings, Shuttle dockings or berthings, and mass translations. Some disruptions can be controlled and timed as to not affect on-site testing, such as thruster firings and Shuttle dockings. The relatively innocuous routinely activities astronauts conduct in a space station ranging from maintenance or moving freely around the station add onto a category of impermanent disturbances that are more spontaneous and unpredictable, which cannot be as easily accounted for.


Preventing G-jitter

Due to the rise in the awareness of the implications of g-jitter, accelerometers with capabilities to attune to a hectic low-gravity environment have begun to be incorporated within space vehicles. Past experiments conducted in the Space Shuttle environment have served as a base to correlate g-jitter's effects to testing in material science and numerically model the residual acceleration to help devise specific experiments for a particular environment. Methods for the analysis of acceleration readings are readily available, but the difficult task of shifting through all the raw data can be facilitated by keeping a timeline of the recorded events and correlate them to a respective residual acceleration.Rogers, M.J.B. and Alexander, J.I.D. "A strategy for residual acceleration data reduction and dissemination--from orbiting space laboratories". Advances in Space Research 11:5-8 (1991a).


References

{{reflist Space manufacturing Spaceflight technology