Filament propagation
   HOME

TheInfoList



OR:

In
nonlinear optics Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in ''nonlinear media'', that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typic ...
, filament propagation is propagation of a beam of
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
through a medium without
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
. This is possible because the
Kerr effect The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index chan ...
causes an
index of refraction In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
change in the medium, resulting in
self-focusing Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens ...
of the beam. Filamentary damage tracks in glass caused by laser pulses were first observed by Michael Hercher in 1964. Filament propagation of laser pulses in the atmosphere was observed in 1994 by
Gérard Mourou Gérard Albert Mourou (; born 22 June 1944) is a French scientist and pioneer in the field of electrical engineering and lasers. He was awarded a Nobel Prize in Physics in 2018, along with Donna Strickland, for the invention of chirped pulse a ...
and his team at
University of Michigan , mottoeng = "Arts, Knowledge, Truth" , former_names = Catholepistemiad, or University of Michigania (1817–1821) , budget = $10.3 billion (2021) , endowment = $17 billion (2021)As o ...
. The balance between the self-focusing refraction and self-attenuating
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
by
ionization Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecul ...
and
rarefaction Rarefaction is the reduction of an item's density, the opposite of compression. Like compression, which can travel in waves ( sound waves, for instance), rarefaction waves also exist in nature. A common rarefaction wave is the area of low relat ...
of a laser beam of terawatt intensities, created by
chirped pulse amplification Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort pulse, ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The ...
, in the atmosphere creates "filaments" which act as waveguides for the beam thus preventing divergence. Competing theories, that the observed filament was actually an illusion created by an axiconic (bessel) or moving focus instead of a "waveguided" concentration of the optical energy, were put to rest by workers at Los Alamos National Laboratory in 1997. Though sophisticated models have been developed to describe the filamentation process, a model proposed by Akozbek et al. provides a semi-analytical and easy to understand solution for the propagation of strong laser pulses in the air. Filament propagation in a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
medium can also be observed in large aperture vertical cavity surface emitting lasers.


Femtosecond laser filamentation in gaseous media


Self-focusing

A laser beam traversing a medium can modulate the refractive index of medium as :n = where n_0, \bar_2 and I are linear refractive index, second order refractive index and intensity of propagating laser field respectively. Self-focusing occurs when the phase shift due to Kerr effect compensates for the phase shift because of Gaussian beam divergence. Phase change due to diffraction for a Gaussian beam after traversing a length of \Delta z is :\phi_=r^2 and phase change because of Kerr effect is :\phi_=exp() \approx (1-). where k=, \rho_0=(Rayleigh range) and w_0 is the waist of Gaussian beam. For self-focusing to happen the one have to satisfy the condition of r^2 terms be equal in magnitude for both Kerr and diffraction phases. Hence :I_0=. On the other hand, we know that area of a Gaussian beam at its waist is \pi w_0^2\over 2. Therefore :P_=. Note :\bar_2 \left(\right)=n_2n_0\epsilon_0c Self-focusing needs a laser peak power higher than the critical power P_ (order of gigawatts in air), however, for infrared (IR) nanosecond pulses with peak powers higher than the critical power self-focusing is not possible. Multiphoton ionization, inverse Bremsstrahlung and electron avalanche ionization are three major results of gas and laser interaction. The later two processes are collisional-type interactions and take time to accomplish (picosecond to nanosecond). A nanosecond pulse is long enough to develop the air breakdown before the power reaches the GW order required for self-focusing. Breakdown of gas produces plasma that has absorbing and reflecting effect so self-focusing is prohibited.


Re-focusing during the propagation of a focused short laser pulse

An interesting phenomenon related to the filament propagation is the refocusing of focused laser pulses after the geometrical focus. Gaussian Beam propagation predicts an increasing beam width bidirectionally away from the geometric focus. However, in the situation of laser filamentation, the beam will quickly recollapse. This divergence and refocusing will continue indefinitely.


Filament propagation in photo-reactive systems

Filament formation and propagation may also be observed in photopolymer systems. Such systems display a Kerr-like optical nonlinearity via photoreactive-based increases in the refractive index. The filaments form as a result of the self-trapping of individual beams, or modulation instability of a wide-area light profile. Filament propagation has been observed in several photo-polymerizable systems, including organo-siloxane, acrylics, epoxy and copolymers with epoxies, and polymer blends. The locations of filament formation and propagation may be controlled by modulating the spatial profile of the input light field. Such photo-reactive systems are able to produce filaments from spatially and temporally incoherent light, because the slow reaction responds to the time-average intensity of the optical field, whereby femto-second fluctuations wash out. This is similar to photo-refractive media with non-instantaneous responses, which enable filament propagation with incoherent or partially incoherent light.


Potential applications

The filaments, having made a plasma, turn the narrowband laser pulse into a broadband pulse having a wholly new set of applications. An interesting aspect of the filamentation induced plasma is the limited density of the electrons, a process which prevents the optical breakdown. This effect provides an excellent source for spectroscopy of high pressure with low level of continuum and also smaller line broadening. Another potential application is the
LIDAR Lidar (, also LIDAR, or LiDAR; sometimes LADAR) is a method for determining ranges (variable distance) by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. It can also be ...
-monitoring of air. Flat panel dicing using short laser pulses is an important application due to the fact that as the glass substrates become thinner it becomes more difficult to improve the process yield using conventional diamond blade dicing techniques. Using short pulses dicing speeds of over 400 mm/s has been successfully demonstrated on non-alkali glass and borosilicate glass, using a 50 kHz, 5W high-power femtosecond laser. The working principal developed by Kamata et al. is the following. The short pulse laser beam having a wavelength to which the work is transparent is directed to the front surface of the work toward the back surface and focused. A filament in the light beam traveling direction from the beam waist is formed by the auto-focusing action due to the laser beam propagation in the work is formed. The substance in the filament is decomposed by the laser beam and can be discharged from the back surface, and a cavity is formed in the channel. While forming the cavity, the laser beam is scanned, a machined surface is formed, and thereafter the work can be cut with a weak bending stress. In July 2014, researchers at the
University of Maryland The University of Maryland, College Park (University of Maryland, UMD, or simply Maryland) is a public land-grant research university in College Park, Maryland. Founded in 1856, UMD is the flagship institution of the University System of ...
reported using filamenting
femtosecond laser Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes r ...
pulses in a square arrangement to produce a density gradient in air which acted as an optical
waveguide A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities de ...
lasting on the order of several milliseconds. Initial testing demonstrated a signal gain of 50% over an unguided signal at a distance of about one meter.


References


External links


Experiments Detail How Powerful Ultrashort Laser Pulses Propagate through Air

Filamentation and Propagation of Ultra-Short, Intense Laser Pulses in Air
{{cite journal, doi=10.1134/S1054660X11190054, bibcode = 2012LaPhy..22....1C , volume=22 , title=Advances in intense femtosecond laser filamentation in air, journal=Laser Physics, pages=1–53, year = 2012 , last1 = Chin , first1 = S. L. , last2 = Wang , first2 = T. -J. , last3 = Marceau , first3 = C. , last4 = Wu , first4 = J. , last5 = Liu , first5 = J. S. , last6 = Kosareva , first6 = O. , last7 = Panov , first7 = N. , last8 = Chen , first8 = Y. P. , last9 = Daigle , first9 = J. -F. , last10 = Yuan , first10 = S. , last11 = Azarm , first11 = A. , last12 = Liu , first12 = W. W. , last13 = Seideman , first13 = T. , last14 = Zeng , first14 = H. P. , last15 = Richardson , first15 = M. , last16 = Li , first16 = R. , last17 = Xu , first17 = Z. Z. , s2cid = 12993181 , url = https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=3409&context=facultybib2010 Nonlinear optics