HOME

TheInfoList



OR:

Forkhead box protein P2 (FOXP2) is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
that, in humans, is encoded by the ''FOXP2''
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
. FOXP2 is a member of the forkhead box family of transcription factors, proteins that regulate gene expression by binding to DNA. It is expressed in the brain, heart, lungs and digestive system. ''FOXP2'' is found in many vertebrates, where it plays an important role in mimicry in birds (such as birdsong) and echolocation in bats. ''FOXP2'' is also required for the proper development of speech and language in humans. In humans, mutations in ''FOXP2'' cause the severe speech and language disorder developmental verbal dyspraxia. Studies of the gene in mice and songbirds indicate that it is necessary for vocal imitation and the related motor learning. Outside the brain, ''FOXP2'' has also been implicated in development of other tissues such as the lung and digestive system. Initially identified in 1998 as the genetic cause of a
speech disorder Speech disorders or speech impairments are a type of communication disorder in which normal speech is disrupted. This can mean stuttering, lisps, etc. Someone who is unable to speak due to a speech disorder is considered mute. Speech skills ...
in a British family designated the KE family, ''FOXP2'' was the first gene discovered to be associated with speech and language and was subsequently dubbed "the language gene". However, other genes are necessary for human language development, and a 2018 analysis confirmed that there was no evidence of recent positive evolutionary selection of ''FOXP2'' in humans.


Structure and function

As a FOX protein, FOXP2 contains a forkhead-box domain. In addition, it contains a polyglutamine tract, a zinc finger and a leucine zipper. The protein attaches to the DNA of other proteins and controls their activity through the forkhead-box domain. Only a few targeted genes have been identified, however researchers believe that there could be up to hundreds of other genes targeted by the FOXP2 gene. The forkhead box P2 protein is active in the brain and other tissues before and after birth, many studies show that it is paramount for the growth of nerve cells and transmission between them. The FOXP2 gene is also involved in synaptic plasticity, making it imperative for learning and memory. ''FOXP2'' is required for proper brain and lung development. Knockout mice with only one functional copy of the ''FOXP2'' gene have significantly reduced vocalizations as pups. Knockout mice with no functional copies of ''FOXP2'' are runted, display abnormalities in brain regions such as the Purkinje layer, and die an average of 21 days after birth from inadequate lung development. ''FOXP2'' is expressed in many areas of the brain, including the
basal ganglia The basal ganglia (BG), or basal nuclei, are a group of subcortical nuclei, of varied origin, in the brains of vertebrates. In humans, and some primates, there are some differences, mainly in the division of the globus pallidus into an ext ...
and inferior frontal cortex, where it is essential for brain maturation and speech and language development. In mice, the gene was found to be twice as highly expressed in male pups than female pups, which correlated with an almost double increase in the number of vocalisations the male pups made when separated from mothers. Conversely, in human children aged 4–5, the gene was found to be 30% more expressed in the
Broca's area Broca's area, or the Broca area (, also , ), is a region in the frontal lobe of the dominant hemisphere, usually the left, of the brain with functions linked to speech production. Language processing has been linked to Broca's area since Pier ...
s of female children. The researchers suggested that the gene is more active in "the more communicative sex". The expression of ''FOXP2'' is subject to post-transcriptional regulation, particularly microRNA (miRNA), which binds to multiple miRNA binding-sites in the neocortex, causing the repression of the FOXP2 3' untranslated region. Three amino acid substitutions distinguish the human ''FOXP2'' protein from that found in mice, while two amino acid substitutions distinguish the human ''FOXP2'' protein from that found in chimpanzees, but only one of these changes is unique to humans. Evidence from genetically manipulated mice and human neuronal cell models * suggests that these changes affect the neural functions of ''FOXP2''.


Clinical significance

The FOXP2 gene has been implicated in several cognitive functions including; general brain development, language, and synaptic plasticity. The FOXP2 gene region acts as a transcription factor for the forkhead box P2 protein. Transcription factors affect other regions, and the forkhead box P2 protein has been suggested to also act as a transcription factor for hundreds of genes. This prolific involvement opens the possibility that the FOXP2 gene is much more extensive than originally thought. Other targets of transcription have been researched without correlation to FOXP2. Specifically, FOXP2 has been investigated in correlation with autism and dyslexia, however with no mutation was discovered as the cause. One well identified target is language. Although some research disagrees with this correlation, the majority of research shows that a mutated FOXP2 causes the observed production deficiency. There is some evidence that the linguistic impairments associated with a mutation of the ''FOXP2'' gene are not simply the result of a fundamental deficit in motor control. Brain imaging of affected individuals indicates functional abnormalities in language-related cortical and basal ganglia regions, demonstrating that the problems extend beyond the motor system. Mutations in FOXP2 are among several (26 genes plus 2 intergenic) loci which correlate to ADHD diagnosis in adults – clinical ADHD is an umbrella label for a heterogeneous group of genetic and neurological phenomena which may result from FOXP2 mutations or other causes. A 2020 genome-wide association study (GWAS) implicates single-nucleotide polymorphisms (SNPs) of FOXP2 in susceptibility to cannabis use disorder.


Language disorder

It is theorized that the translocation of the 7q31.2 region of the FOXP2 gene causes a severe language impairment called developmental verbal dyspraxia (DVD) or childhood apraxia of speech (CAS) So far this type of mutation has only been discovered in three families across the world including the original KE family. A missense mutation causing an arginine-to-histidine substitution (R553H) in the DNA-binding domain is thought to be the abnormality in KE. This would cause a normally basic residue to be fairly acidic and highly reactive at the body's pH. A heterozygous nonsense mutation, R328X variant, produces a truncated protein involved in speech and language difficulties in one KE individual and two of their close family members. R553H and R328X mutations also affected nuclear localization, DNA-binding, and the transactivation (increased gene expression) properties of FOXP2. These individuals present with deletions, translocations, and missense mutations. When tasked with repetition and verb generation, these individuals with DVD/CAS had decreased activation in the putamen and Broca's area in fMRI studies. These areas are commonly known as areas of language function. This is one of the primary reasons that FOXP2 is known as a language gene. They have delayed onset of speech, difficulty with articulation including, slurred speech, stuttering, and poor pronunciation, as well as dyspraxia. It is believed that a major part of this speech deficit comes from an inability to coordinate the movements necessary to produce normal speech including mouth and tongue shaping. Additionally, there are more general impairments with the processing of the grammatical and linguistic aspects of speech. These findings suggest that the effects of FOXP2 are not limited to motor control, as they include comprehension among other cognitive language functions. General mild motor and cognitive deficits are noted across the board. Clinically these patients can also have difficulty coughing, sneezing, and/or clearing their throats. While FOXP2 has been proposed to play a critical role in the development of speech and language, this view has been challenged by the fact that the gene is also expressed in other mammals as well as birds and fish that do not speak. It has also been proposed that the FOXP2 transcription-factor is not so much a hypothetical 'language gene' but rather part of a regulatory machinery related to externalization of speech.


Evolution

The ''FOXP2'' gene is highly conserved in mammals. The human gene differs from that in non-human primates by the substitution of two amino acids, a threonine to
asparagine Asparagine (symbol Asn or N) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), an α-carboxylic acid group (which is in the depro ...
substitution at position 303 (T303N) and an asparagine to serine substitution at position 325 (N325S). In mice it differs from that of humans by three substitutions, and in zebra finch by seven amino acids. One of the two amino acid differences between human and chimps also arose independently in carnivores and bats. Similar ''FOXP2'' proteins can be found in songbirds,
fish Fish are Aquatic animal, aquatic, craniate, gill-bearing animals that lack Limb (anatomy), limbs with Digit (anatomy), digits. Included in this definition are the living hagfish, lampreys, and Chondrichthyes, cartilaginous and bony fish as we ...
, and reptiles such as alligators. DNA sampling from '' Homo neanderthalensis'' bones indicates that their ''FOXP2'' gene is a little different though largely similar to those of ''
Homo sapiens Humans (''Homo sapiens'') are the most abundant and widespread species of primate, characterized by bipedalism and exceptional cognitive skills due to a large and complex brain. This has enabled the development of advanced tools, culture ...
'' (i.e. humans). * See also Previous genetic analysis had suggested that the ''H. sapiens'' FOXP2 gene became fixed in the population around 125,000 years ago. Some researchers consider the Neanderthal findings to indicate that the gene instead swept through the population over 260,000 years ago, before our most recent common ancestor with the Neanderthals. Other researchers offer alternative explanations for how the ''H. sapiens'' version would have appeared in Neanderthals living 43,000 years ago. According to a 2002 study, the ''FOXP2'' gene showed indications of recent positive selection. Some researchers have speculated that positive selection is crucial for the evolution of language in humans. Others, however, were unable to find a clear association between species with learned vocalizations and similar mutations in ''FOXP2''. A 2018 analysis of a large sample of globally distributed genomes confirmed there was no evidence of positive selection, suggesting that the original signal of positive selection may be driven by sample composition. Insertion of both human
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
s into mice, whose version of ''FOXP2'' otherwise differs from the human and chimpanzee versions in only one additional base pair, causes changes in vocalizations as well as other behavioral changes, such as a reduction in exploratory tendencies, and a decrease in maze learning time. A reduction in dopamine levels and changes in the morphology of certain nerve cells are also observed.


Interactions

FOXP2 is known to regulate ''
CNTNAP2 Contactin-associated protein-like 2 is a protein that in humans is encoded by the ''CNTNAP2'' gene. Since the most recent reference human genome GRCh38, CNTNAP2 is the longest gene in the human genome This gene encodes a member of the neurexin ...
'', ''
CTBP1 C-terminal-binding protein 1 also known as CtBP1 is a protein that in humans is encoded by the ''CTBP1'' gene. CtBP1 is one of two CtBP proteins, the other protein being CtBP2. Function The CtBP1 protein was originally identified as a human prot ...
'', '' SRPX2'' and '' SCN3A''. FOXP2 downregulates ''CNTNAP2'', a member of the
neurexin Neurexins (NRXN) are a family of presynaptic cell adhesion proteins that have roles in connecting neurons at the synapse. They are located mostly on the presynaptic membrane and contain a single transmembrane domain. The extracellular domai ...
family found in neurons. ''CNTNAP2'' is associated with common forms of language impairment. FOXP2 also downregulates ''SRPX2'', the 'Sushi Repeat-containing Protein X-linked 2'. It directly reduces its expression, by binding to its gene's promoter. SRPX2 is involved in glutamatergic
synapse formation Synaptogenesis is the formation of synapses between neurons in the nervous system. Although it occurs throughout a healthy person's lifespan, an explosion of synapse formation occurs during early brain development, known as exuberant synaptogenes ...
in the
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consisting o ...
and is more highly expressed in childhood. SRPX2 appears to specifically increase the number of glutamatergic synapses in the brain, while leaving inhibitory GABAergic synapses unchanged and not affecting dendritic spine length or shape. On the other hand, FOXP2's activity does reduce dendritic spine length and shape, in addition to number, indicating it has other regulatory roles in dendritic morphology.


In other animals


Chimpanzees

In chimpanzees, FOXP2 differs from the human version by two amino acids. A study in Germany sequenced FOXP2's complementary DNA in chimps and other species to compare it with human complementary DNA in order to find the specific changes in the sequence. FOXP2 was found to be functionally different in humans compared to chimps. Since FOXP2 was also found to have an effect on other genes, its effects on other genes is also being studied. Researchers deduced that there could also be further clinical applications in the direction of these studies in regards to illnesses that show effects on human language ability.


Mice

In a mouse ''FOXP2'' gene knockouts, loss of both copies of the gene causes severe motor impairment related to cerebellar abnormalities and lack of ultrasonic vocalisations normally elicited when pups are removed from their mothers. These vocalizations have important communicative roles in mother-offspring interactions. Loss of one copy was associated with impairment of ultrasonic vocalisations and a modest developmental delay. Male mice on encountering female mice produce complex ultrasonic vocalisations that have characteristics of song. Mice that have the R552H point mutation carried by the KE family show cerebellar reduction and abnormal synaptic plasticity in striatal and cerebellar circuits. Humanized FOXP2 mice display altered cortico-basal ganglia circuits. The human allele of the FOXP2 gene was transferred into the mouse embryos through homologous recombination to create humanized FOXP2 mice. The human variant of FOXP2 also had an effect on the exploratory behavior of the mice. In comparison to knockout mice with one non-functional copy of ''FOXP2'', the humanized mouse model showed opposite effects when testing its effect on the levels of dopamine, plasticity of synapses, patterns of expression in the striatum and behavior that was exploratory in nature. When FOXP2 expression was altered in mice, it affected many different processes including the learning motor skills and the plasticity of synapses. Additionally, FOXP2 is found more in the sixth layer of the cortex than in the fifth, and this is consistent with it having greater roles in sensory integration. FOXP2 was also found in the medial geniculate nucleus of the mouse brain, which is the processing area that auditory inputs must go through in the thalamus. It was found that its mutations play a role in delaying the development of language learning. It was also found to be highly expressed in the Purkinje cells and cerebellar nuclei of the cortico-cerebellar circuits. High FOXP2 expression has also been shown in the spiny neurons that express type 1 dopamine receptors in the striatum,
substantia nigra The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. ''Substantia nigra'' is Latin for "black substance", reflecting the fact that parts of the substantia nigra ap ...
,
subthalamic nucleus The subthalamic nucleus (STN) is a small lens-shaped nucleus in the brain where it is, from a functional point of view, part of the basal ganglia system. In terms of anatomy, it is the major part of the subthalamus. As suggested by its name, the ...
and
ventral tegmental area The ventral tegmental area (VTA) (tegmentum is Latin for ''covering''), also known as the ventral tegmental area of Tsai, or simply ventral tegmentum, is a group of neurons located close to the midline on the floor of the midbrain. The VTA is the ...
. The negative effects of the mutations of FOXP2 in these brain regions on motor abilities were shown in mice through tasks in lab studies. When analyzing the brain circuitry in these cases, scientists found greater levels of dopamine and decreased lengths of dendrites, which caused defects in
long-term depression In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depend ...
, which is implicated in motor function learning and maintenance. Through EEG studies, it was also found that these mice had increased levels of activity in their striatum, which contributed to these results. There is further evidence for mutations of targets of the FOXP2 gene shown to have roles in
schizophrenia Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social w ...
,
epilepsy Epilepsy is a group of non-communicable neurological disorders characterized by recurrent epileptic seizures. Epileptic seizures can vary from brief and nearly undetectable periods to long periods of vigorous shaking due to abnormal electrica ...
, autism,
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of Depression (mood), depression and periods of abnormally elevated Mood (psychology), mood that last from days to weeks each. If the elevat ...
and intellectual disabilities.


Bats

''FOXP2'' has implications in the development of bat echolocation. Contrary to apes and mice, ''FOXP2'' is extremely diverse in echolocating bats. Twenty-two sequences of non-bat eutherian mammals revealed a total number of 20 nonsynonymous mutations in contrast to half that number of bat sequences, which showed 44 nonsynonymous mutations. All cetaceans share three amino acid substitutions, but no differences were found between echolocating toothed whales and non-echolocating baleen cetaceans. Within bats, however, amino acid variation correlated with different echolocating types.


Birds

In songbirds, ''FOXP2'' most likely regulates genes involved in neuroplasticity. Gene knockdown of ''FOXP2'' in area X of the
basal ganglia The basal ganglia (BG), or basal nuclei, are a group of subcortical nuclei, of varied origin, in the brains of vertebrates. In humans, and some primates, there are some differences, mainly in the division of the globus pallidus into an ext ...
in songbirds results in incomplete and inaccurate song imitation. Overexpression of ''FOXP2'' was accomplished through injection of
adeno-associated virus Adeno-associated viruses (AAV) are small viruses that infect humans and some other primate species. They belong to the genus ''Dependoparvovirus'', which in turn belongs to the family '' Parvoviridae''. They are small (approximately 26 nm i ...
serotype 1 (AAV1) into area X of the brain. This overexpression produced similar effects to that of knockdown; juvenile zebra finch birds were unable to accurately imitate their tutors. Similarly, in adult canaries, higher ''FOXP2'' levels also correlate with song changes. Levels of ''FOXP2'' in adult zebra finches are significantly higher when males direct their song to females than when they sing song in other contexts. "Directed" singing refers to when a male is singing to a female usually for a courtship display. "Undirected" singing occurs when for example, a male sings when other males are present or is alone. Studies have found that FoxP2 levels vary depending on the social context. When the birds were singing undirected song, there was a decrease of FoxP2 expression in Area X. This downregulation was not observed and FoxP2 levels remained stable in birds singing directed song. Differences between song-learning and non-song-learning birds have been shown to be caused by differences in ''FOXP2'' gene expression, rather than differences in the amino acid sequence of the ''FOXP2'' protein.


Zebrafish

In zebrafish, FOXP2 is expressed in the ventral and
dorsal thalamus The thalamus (from Greek θάλαμος, "chamber") is a large mass of gray matter located in the dorsal part of the diencephalon (a division of the forebrain). Nerve fibers project out of the thalamus to the cerebral cortex in all directions, ...
,
telencephalon The cerebrum, telencephalon or endbrain is the largest part of the brain containing the cerebral cortex (of the two cerebral hemispheres), as well as several subcortical structures, including the hippocampus, basal ganglia, and olfactory bulb. ...
, diencephalon where it likely plays a role in nervous system development. The zebrafish FOXP2 gene has an 85% similarity to the human FOX2P ortholog.


History

''FOXP2'' and its gene were discovered as a result of investigations on an English family known as the KE family, half of whom (15 individuals across three generations) had a speech and language disorder called developmental verbal dyspraxia. Their case was studied at the Institute of Child Health of University College London. In 1990, Myrna Gopnik, Professor of Linguistics at
McGill University McGill University (french: link=no, Université McGill) is an English-language public research university located in Montreal, Quebec, Canada. Founded in 1821 by royal charter granted by King George IV,Frost, Stanley Brice. ''McGill Univer ...
, reported that the disorder-affected KE family had severe speech impediment with incomprehensible talk, largely characterized by grammatical deficits. She hypothesized that the basis was not of learning or cognitive disability, but due to genetic factors affecting mainly grammatical ability. (Her hypothesis led to a popularised existence of "grammar gene" and a controversial notion of grammar-specific disorder.) In 1995, the
University of Oxford , mottoeng = The Lord is my light , established = , endowment = £6.1 billion (including colleges) (2019) , budget = £2.145 billion (2019–20) , chancellor ...
and the Institute of Child Health researchers found that the disorder was purely genetic. Remarkably, the inheritance of the disorder from one generation to the next was consistent with autosomal dominant inheritance, i.e., mutation of only a single gene on an autosome (non-
sex chromosome A sex chromosome (also referred to as an allosome, heterotypical chromosome, gonosome, heterochromosome, or idiochromosome) is a chromosome that differs from an ordinary autosome in form, size, and behavior. The human sex chromosomes, a typical ...
) acting in a dominant fashion. This is one of the few known examples of Mendelian (monogenic) inheritance for a disorder affecting speech and language skills, which typically have a complex basis involving multiple genetic risk factors. In 1998, Oxford University geneticists
Simon Fisher Simon E. Fisher (born 1970) is a British geneticist and neuroscientist who has pioneered research into the genetic basis of human speech and language. He is a director of the Max Planck Institute for Psycholinguistics and Professor of language a ...
, Anthony Monaco, Cecilia S. L. Lai, Jane A. Hurst, and Faraneh Vargha-Khadem identified an autosomal dominant monogenic inheritance that is localized on a small region of
chromosome 7 Chromosome 7 is one of the 23 pairs of chromosomes in humans, who normally have two copies of this chromosome. Chromosome 7 spans about 159 million base pairs (the building material of DNA) and represents between 5 and 5.5 percent of the total ...
from DNA samples taken from the affected and unaffected members. The chromosomal region (locus) contained 70 genes. The locus was given the official name "SPCH1" (for speech-and-language-disorder-1) by the Human Genome Nomenclature committee. Mapping and sequencing of the chromosomal region was performed with the aid of
bacterial artificial chromosome A bacterial artificial chromosome (BAC) is a DNA construct, based on a functional fertility plasmid (or F-plasmid), used for transforming and cloning in bacteria, usually '' E. coli''. F-plasmids play a crucial role because they contain partiti ...
clones. Around this time, the researchers identified an individual who was unrelated to the KE family but had a similar type of speech and language disorder. In this case, the child, known as CS, carried a chromosomal rearrangement (a translocation) in which part of chromosome 7 had become exchanged with part of chromosome 5. The site of breakage of chromosome 7 was located within the SPCH1 region. In 2001, the team identified in CS that the mutation is in the middle of a protein-coding gene. Using a combination of bioinformatics and RNA analyses, they discovered that the gene codes for a novel protein belonging to the forkhead-box (FOX) group of transcription factors. As such, it was assigned with the official name of FOXP2. When the researchers sequenced the ''FOXP2'' gene in the KE family, they found a
heterozygous Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. ...
point mutation shared by all the affected individuals, but not in unaffected members of the family and other people. This mutation is due to an amino-acid substitution that inhibits the DNA-binding domain of the ''FOXP2'' protein. Further screening of the gene identified multiple additional cases of ''FOXP2'' disruption, including different point mutations and chromosomal rearrangements, providing evidence that damage to one copy of this gene is sufficient to derail speech and language development.


See also

*
Chimpanzee genome project The Chimpanzee Genome Project was an effort to determine the DNA sequence of the chimpanzee genome. Sequencing began in 2005 and by 2013 twenty-four individual chimpanzees had been sequenced. This project was folded into the Great Ape Genome Pro ...
* Evolutionary linguistics * FOX proteins *
Olduvai domain The Olduvai domain, known until 2018 as DUF1220 (domain of unknown function 1220) and the NBPF repeat, is a protein domain that shows a striking human lineage-specific (HLS) increase in copy number and appears to be involved in human brain evolu ...
* Origin of language * Vocal learning


References


External links


Gene information at NCBI

Gene information at Genetic Home Reference

Language and Genetics Research
at the
Max Planck Institute for Psycholinguistics The Max Planck Institute for Psycholinguistics ( German: ''Max-Planck-Institut für Psycholinguistik''; Dutch: ''Max Planck Instituut voor Psycholinguïstiek'') is a research institute situated on the campus of Radboud University Nijmegen located ...

The FOXP2 story

Revisiting FOXP2 and the origins of language


* {{DEFAULTSORT:Foxp2 Forkhead transcription factors Evolution of language Genetics concepts Speech and language pathology Genes on human chromosome 7