HOME

TheInfoList



OR:

Fullerides are
chemical compounds A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
containing fullerene
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s. Common fullerides are derivatives of the most common
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
s, i.e. C60 and C70. The scope of the area is large because multiple charges are possible, i.e., 60sup>''n''− (''n'' = 1, 2...6), and all fullerenes can be converted to fullerides. The suffix "-ide" implies their negatively charged nature. Fullerides can be isolated as derivatives with a wide range of
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s. Most heavily studied derivatives are those with
alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
s, but fullerides have been prepared with organic cations. Fullerides are typically dark colored solids that generally dissolve in polar organic solvents.


Structure and bonding

According to electronic structure calculations, the
LUMO In chemistry, HOMO and LUMO are types of molecular orbitals. The acronyms stand for ''highest occupied molecular orbital'' and ''lowest unoccupied molecular orbital'', respectively. HOMO and LUMO are sometimes collectively called the ''frontie ...
of C60 is a triply degenerate orbital of t1u symmetry. Using the technique
cyclic voltammetry Cyclic voltammetry (CV) is a type of potentiodynamic electrochemical measurement. In a cyclic voltammetry experiment, the working electrode potential is ramped linearly versus time. Unlike in linear sweep voltammetry, after the set potential is re ...
, C60 can be shown to undergo six reversible reductions starting at −1 V referenced to the Fc+/Fc couple. Reduction causes only subtle changes in the structure and many derivatives exhibit disorder, which obscures these effects. Many fullerides are subject to Jahn–Teller distortion. In certain cases, e.g. PPN.html" ;"title="bis(triphenylphosphine)iminium.html" ;"title="/nowiki>bis(triphenylphosphine)iminium">PPN">bis(triphenylphosphine)iminium.html" ;"title="/nowiki>bis(triphenylphosphine)iminium">PPN/nowiki>2C60, the structures are highly ordered and slight (10 pm) elongation of some C−C bonds is observed.


Preparation

Fullerides have been prepared in various ways: *treating with alkali metals to give the alkali metal fullerides: :C60 + 2 K → K2C60 *treating with suitable organic and organometallic reducing agents, such as cobaltocene and tetrakisdimethylaminoethylene. *alkali metal fullerides can be subjected to cation metathesis. In this way the (bis(triphenylphosphine)iminium (PPN+) salts have been prepared, e.g. PNsub>2C60: :K2C60 + 2 PNl → PNsub>2C60 + 2 KCl The fulleride salt ( (crypt-222)sup>+)2 60sup>2− salt is synthesized by treating C60 with metallic
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosphe ...
in the presence of .2.2ryptand.


Alkali metal derivatives

Particular attention has been paid to
alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
(Na+, K+, Rb+, Cs+) derivatives of C603− because these compounds exhibit physical properties resulting from intercluster interactions such as metallic behavior. In contrast, in C60, the individual molecules interact only weakly, i.e. with essentially nonoverlapping bands. These alkali metal derivatives are sometimes viewed as arising by intercalation of the metal into C60 lattice. Alternatively, these materials are viewed as n-doped fullerenes. Alkali metal salts of this trianion are
superconducting Superconductivity is a set of physical properties observed in certain materials where Electrical resistance and conductance, electrical resistance vanishes and magnetic field, magnetic flux fields are expelled from the material. Any material e ...
. In M3C60 (M = Na, K, Rb), the M+ ions occupy the interstitial holes in a lattice composed of ccp lattice composed of nearly spherical C60 anions. In Cs3C60, the cages are arranged in a bcc lattice. In 1991, it was revealed that potassium-doped C60 becomes
superconducting Superconductivity is a set of physical properties observed in certain materials where Electrical resistance and conductance, electrical resistance vanishes and magnetic field, magnetic flux fields are expelled from the material. Any material e ...
at . This was the highest transition temperature for a molecular superconductor. Since then, superconductivity has been reported in fullerene doped with various other alkali metals. It has been shown that the superconducting transition temperature in alkaline-metal-doped fullerene increases with the unit-cell volume V. As Cs+ is the largest alkali ion, caesium-doped fullerene is an important material in this family. Superconductivity at has been reported in bulk Cs3C60, but only under applied pressure. The highest superconducting transition temperature of at ambient pressure is reported for Cs2RbC60. The increase of transition temperature with the unit-cell volume had been believed to be evidence for the BCS mechanism of C60 solid superconductivity, because inter C60 separation can be related to an increase in the density of states on the Fermi level, ''N''(''ε''F). Therefore, efforts have been made to increase the interfullerene separation, in particular, intercalating neutral molecules into the A3C60 lattice to increase the interfullerene spacing while the valence of C60 is kept unchanged. However, this ammoniation technique has revealed a new aspect of fullerene intercalation compounds: the
Mott transition A Mott transition is a metal-nonmetal transition in condensed matter. Due to electric field screening the potential energy becomes much more sharply (exponentially) peaked around the equilibrium position of the atom and electrons become localized an ...
and the correlation between the orientation/orbital order of C60 molecules and the magnetic structure. Fourfold-reduced materials, i.e., those with the stoichiometry A4C60, are insulating, even though the t1u band is only partially filled. This apparent anomaly may be explained by the
Jahn–Teller effect The Jahn–Teller effect (JT effect or JTE) is an important mechanism of spontaneous symmetry breaking in molecular and solid-state systems which has far-reaching consequences in different fields, and is responsible for a variety of phenomena in sp ...
, where spontaneous deformations of high-symmetry molecules induce the splitting of degenerate levels to gain the electronic energy. The Jahn–Teller type electron-phonon interaction is strong enough in C60 solids to destroy the band picture for particular valence states. A narrow band or strongly correlated electronic system and degenerated ground states are relevant to explaining superconductivity in fulleride solids. When the interelectron repulsion ''U'' is greater than the bandwidth, an insulating localized electron ground state is produced in the simple Mott–Hubbard model. This explains the absence of superconductivity at ambient pressure in caesium-doped C60 solids. Electron-correlation-driven localization of the t1u electrons exceeds the critical value, leading to the Mott insulator. The application of high pressure decreases the interfullerene spacing, therefore caesium-doped C60 solids turn to metallic and superconducting. A fully developed theory of C60 solids superconductivity is lacking, but it has been widely accepted that strong electronic correlations and the Jahn–Teller electron–phonon coupling produce local electron pairings that show a high transition temperature close to the insulator–metal transition.


References


Further reading

* *{{cite journal , year = 1991 , title = Conducting films of C60 and C70 by alkali-metal doping , journal =
Nature Nature, in the broadest sense, is the physics, physical world or universe. "Nature" can refer to the phenomenon, phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. ...
, volume = 350, pages = 320–322 , doi = 10.1038/350320a0 , issue=6316 , bibcode = 1991Natur.350..320H , last1 = Haddon , first1 = R. C. , last2 = Hebard , first2 = A. F. , last3 = Rosseinsky , first3 = M. J. , last4 = Murphy , first4 = D. W. , last5 = Duclos , first5 = S. J. , last6 = Lyons , first6 = K. B. , last7 = Miller , first7 = B. , last8 = Rosamilia , first8 = J. M. , last9 = Fleming , first9 = R. M. , last10 = Kortan , first10 = A. R. , last11 = Glarum , first11 = S. H. , last12 = Makhija , first12 = A. V. , last13 = Muller , first13 = A. J. , last14 = Eick , first14 = R. H. , last15 = Zahurak , first15 = S. M. , last16 = Tycko , first16 = R. , last17 = Dabbagh , first17 = G. , last18 = Thiel , first18 = F. A. Fullerenes