HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Frölicher spectral sequence (often misspelled as Fröhlicher) is a tool in the theory of
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a com ...
s, for expressing the potential failure of the results of
cohomology theory In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
that are valid in general only for
Kähler manifold In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnold ...
s. It was introduced by . A
spectral sequence In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they hav ...
is set up, the degeneration of which would give the results of
Hodge theory In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every cohom ...
and
Dolbeault's theorem In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let ''M'' be a complex manifold. Then the Dolbeault cohomo ...
.


See also

* Hodge–de Rham spectral sequence


References

* {{DEFAULTSORT:Frohlicher Spectral Sequence Complex manifolds Spectral sequences