Foams are
materials
Material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geologic ...
formed by trapping pockets of
gas
Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma).
A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
in a
liquid
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
or
solid
Solid is one of the State of matter#Four fundamental states, four fundamental states of matter (the others being liquid, gas, and Plasma (physics), plasma). The molecules in a solid are closely packed together and contain the least amount o ...
.
A
bath sponge and the
head on a glass of beer are examples of foams. In most foams, the volume of
gas
Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma).
A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
is large, with thin films of liquid or solid separating the regions of gas. Soap foams are also known as suds.
Solid foams can be closed-cell or
open-cell. In closed-cell foam, the gas forms discrete pockets, each completely surrounded by the solid material. In open-cell foam, gas pockets connect to each other. A bath sponge is an example of an open-cell foam: water easily flows through the entire structure, displacing the air. A
sleeping mat
In camping, a ground pad, sleeping pad, thermal pad, sleeping mat, or roll mat is lightweight pad, common among hikers, backpackers and budget travelers, often used in conjunction with a sleeping bag. Its purpose is to provide padding and thermal ...
is an example of a closed-cell foam: gas pockets are sealed from each other so the mat cannot soak up water.
Foams are examples of
dispersed media
A dispersed medium consists of two media that do not mix. More specifically, it contains discrete elements of one medium which are dispersed in a continuous second medium. The two media can be of very different nature. In particular, they can be a ...
. In general, gas is present, so it divides into gas
bubbles of different sizes (i.e., the material is
polydisperse)—separated by liquid regions that may form films, thinner and thinner when the liquid phase drains out of the system
films
A film also called a movie, motion picture, moving picture, picture, photoplay or (slang) flick is a work of visual art that simulates experiences and otherwise communicates ideas, stories, perceptions, feelings, beauty, or atmosphere ...
. When the principal scale is small, i.e., for a very fine foam, this dispersed medium can be considered a type of
colloid
A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
.
''Foam'' can also refer to something that is analogous to foam, such as
quantum foam
Quantum foam or spacetime foam is a theoretical quantum fluctuation of spacetime on very small scales due to quantum mechanics. The theory predicts that at these small scales, particles of matter and antimatter are constantly created and destroye ...
.
Structure
A foam is, in many cases, a multi-scale system.
One scale is the bubble:
material
Material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geologi ...
foams are typically
disordered and have a variety of bubble sizes. At larger sizes, the study of idealized foams is closely linked to the mathematical problems of
minimal surface
In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below).
The term "minimal surface" is used because these surfaces originally arose as surfaces that ...
s and three-dimensional
tessellations
A tessellation or tiling is the covering of a surface, often a plane (mathematics), plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to high-dimensional ...
, also called
honeycombs. The
Weaire–Phelan structure
In geometry, the Weaire–Phelan structure is a three-dimensional structure representing an idealised foam of equal-sized bubbles, with two different shapes. In 1993, Denis Weaire and Robert Phelan found that this structure was a better solution ...
is considered the best possible (optimal)
unit cell
In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessaril ...
of a perfectly ordered foam, while
Plateau's laws
Plateau's laws describe the structure of soap films. These laws were formulated in the 19th century by the Belgian physicist Joseph Plateau from his experimental observations. Many patterns in nature are based on foams obeying these laws.
Laws f ...
describe how soap-films form structures in foams.
At lower scale than the bubble is the thickness of the film for
metastable
In chemistry and physics, metastability denotes an intermediate Energy level, energetic state within a dynamical system other than the system's ground state, state of least energy.
A ball resting in a hollow on a slope is a simple example of me ...
foams, which can be considered a network of interconnected films called
lamellae
Lamella (plural lamellae) means a small plate or flake in Latin, and in English may refer to:
Biology
* Lamella (mycology), a papery rib beneath a mushroom cap
* Lamella (botany)
* Lamella (surface anatomy), a plate-like structure in an animal
* ...
. Ideally, the lamellae connect in triads and radiate 120° outward from the connection points, known as
Plateau borders.
An even lower scale is the liquid–air interface at the surface of the film. Most of the time this interface is stabilized by a layer of
amphiphilic
An amphiphile (from the Greek αμφις amphis, both, and φιλíα philia, love, friendship), or amphipath, is a chemical compound possessing both hydrophilic (''water-loving'', polar) and lipophilic (''fat-loving'') properties. Such a compoun ...
structure, often made of
surfactant
Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, foaming ...
s, particles (
Pickering emulsion
A Pickering emulsion is an emulsion that is stabilized by solid particles (for example colloidal silica) which adsorb onto the interface between the water and oil phases. Typically, the emulsions are either water-in-oil or oil-in-water emulsions, b ...
), or more complex associations.
Mechanical properties of solid foams
Solid foams, both open-cell and closed-cell, are considered as a sub-class of cellular structures. They often have lower nodal connectivity as compared to other cellular structures like honeycombs and truss lattices, and thus, their failure mechanism is dominated by bending of members. Low nodal connectivity and the resulting failure mechanism ultimately lead to their lower mechanical strength and stiffness compared to honeycombs and truss lattices.
Formation
Several conditions are needed to produce foam: there must be mechanical work,
surface active components (surfactants) that reduce the
surface tension
Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to f ...
, and the formation of foam faster than its breakdown.
To create foam,
work
Work may refer to:
* Work (human activity), intentional activity people perform to support themselves, others, or the community
** Manual labour, physical work done by humans
** House work, housework, or homemaking
** Working animal, an animal tr ...
(W) is needed to increase the
surface area
The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc ...
(ΔA):
:
where γ is the surface tension.
One of the ways foam is created is through dispersion, where a large amount of gas is mixed with a liquid. A more specific method of dispersion involves injecting a gas through a hole in a solid into a liquid. If this process is completed very slowly, then one bubble can be emitted from the orifice at a time as shown in the picture below.
One of the theories for determining the separation time is shown below; however, while this theory produces theoretical data that matches with the experimental data, detachment due to capillarity is accepted as a better explanation.
The
buoyancy
Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the p ...
force acts to raise the bubble, which is
:
where
is the volume of the bubble,
is the acceleration due to gravity, and ρ
1 is the density of the gas ρ
2 is the density of the liquid. The force working against the buoyancy force is the
surface tension
Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to f ...
force, which is
:
,
where γ is the surface tension, and
is the radius of the orifice.
As more air is pushed into the bubble, the buoyancy force grows quicker than the surface tension force. Thus, detachment occurs when the buoyancy force is large enough to overcome the surface tension force.
:
In addition, if the bubble is treated as a sphere with a radius of
and the volume
is substituted in to the equation above, separation occurs at the moment when
:
Examining this phenomenon from a capillarity viewpoint for a bubble that is being formed very slowly, it can be assumed that the pressure
inside is constant everywhere. The hydrostatic pressure in the liquid is designated by
. The change in pressure across the interface from gas to liquid is equal to the capillary pressure; hence,
:
where R
1 and R
2 are the radii of curvature and are set as positive. At the stem of the bubble, R
3 and R
4 are the radii of curvature also treated as positive. Here the hydrostatic pressure in the liquid has to take in account z, the distance from the top to the stem of the bubble. The new hydrostatic pressure at the stem of the bubble is ''p''
0(''ρ''
1 − ''ρ''
2)''z''. The hydrostatic pressure balances the capillary pressure, which is shown below:
:
Finally, the difference in the top and bottom pressure equal the change in hydrostatic pressure:
:
At the stem of the bubble, the shape of the bubble is nearly cylindrical; consequently, either R
3 or R
4 is large while the other radius of curvature is small. As the stem of the bubble grows in length, it becomes more unstable as one of the radius grows and the other shrinks. At a certain point, the vertical length of the stem exceeds the circumference of the stem and due to the buoyancy forces the bubble separates and the process repeats.
[Bikerman, J.J. "Formation and Structure" in ''Foams'' New York, Springer-Verlag, 1973. ch 2. sec 24–25]
Stability
Stabilization
The stabilization of a foam is caused by
van der Waals force
In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
s between the molecules in the foam,
electrical double layer
A double layer (DL, also called an electrical double layer, EDL) is a structure that appears on the surface of an object when it is exposed to a fluid. The object might be a solid particle, a gas bubble, a liquid droplet, or a porous body. The D ...
s created by
dipolar
In physics, a dipole () is an electromagnetic phenomenon which occurs in two ways:
*An electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple example of this system i ...
surfactants, and the
Marangoni effect
The Marangoni effect (also called the Gibbs–Marangoni effect) is the mass transfer along an interface between two phases due to a gradient of the surface tension. In the case of temperature dependence, this phenomenon may be called thermo-capill ...
, which acts as a restoring force to the lamellae.
The Marangoni effect depends on the liquid that is foaming being impure. Generally, surfactants in the solution decrease the surface tension. The surfactants also clump together on the surface and form a layer as shown below.
For the Marangoni effect to occur, the foam must be indented as shown in the first picture. This indentation increases local surface area. Surfactants have a larger diffusion time than the bulk of the solution—so the surfactants are less concentrated in the indentation.
Also, surface stretching makes the surface tension of the indented spot greater than the surrounding area. Consequentially—since diffusion time for the surfactants is large—the Marangoni effect has time to take place. The difference in surface tension creates a gradient, which instigates fluid flow from areas of lower surface tension to areas of higher surface tension. The second picture shows the film at equilibrium after the Marangoni effect has taken place.
Destabilization
Witold Rybczynski and Jacques Hadamard developed an equation to calculate the velocity of bubbles that rise in foam with the assumption that the bubbles are spherical with a radius
.
:
with velocity in units of centimeters per second. ρ
1 and ρ
2 is the density for a gas and liquid respectively in units of g/cm
3 and ῃ
1 and ῃ
2 is the viscosity of the gas and liquid g/cm·s and g is the acceleration in units of cm/s
2.
However, since the density and viscosity of a liquid is much greater than the gas, the density and viscosity of the gas can be neglected, which yields the new equation for velocity of bubbles rising as:
:
However, through experiments it has been shown that a more accurate model for bubbles rising is:
:
Deviations are due to the
Marangoni effect
The Marangoni effect (also called the Gibbs–Marangoni effect) is the mass transfer along an interface between two phases due to a gradient of the surface tension. In the case of temperature dependence, this phenomenon may be called thermo-capill ...
and capillary pressure, which affect the assumption that the bubbles are spherical.
For laplace pressure of a curved gas liquid interface, the two principal radii of curvature at a point are R
1 and R
2. With a curved interface, the pressure in one phase is greater than the pressure in another phase. The capillary pressure P
c is given by the equation of:
:
,
where
is the surface tension. The bubble shown below is a gas (phase 1) in a liquid (phase 2) and point A designates the top of the bubble while point B designates the bottom of the bubble.
At the top of the bubble at point A, the pressure in the liquid is assumed to be p
0 as well as in the gas. At the bottom of the bubble at point B, the hydrostatic pressure is:
:
:
where ρ
1 and ρ
2 is the density for a gas and liquid respectively. The difference in hydrostatic pressure at the top of the bubble is 0, while the difference in hydrostatic pressure at the bottom of the bubble across the interface is ''gz''(''ρ''
2 − ''ρ''
1). Assuming that the radii of curvature at point A are equal and denoted by R
A and that the radii of curvature at point B are equal and denoted by R
B, then the difference in capillary pressure between point A and point B is:
:
At equilibrium, the difference in capillary pressure must be balanced by the difference in hydrostatic pressure. Hence,
:
Since, the density of the gas is less than the density of the liquid the left hand side of the equation is always positive. Therefore, the inverse of R
A must be larger than the R
B. Meaning that from the top of the bubble to the bottom of the bubble the radius of curvature increases. Therefore, without neglecting gravity the bubbles cannot be spherical. In addition, as z increases, this causes the difference in R
A and R
B too, which means the bubble deviates more from its shape the larger it grows.
Foam destabilization occurs for several reasons. First,
gravitation
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
causes drainage of liquid to the foam base, which Rybczynski and Hadamar include in their theory; however, foam also destabilizes due to
osmotic pressure
Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane.
It is also defined as the measure of the tendency of a solution to take in a pure ...
causes drainage from the lamellas to the Plateau borders due to internal concentration differences in the foam, and
Laplace pressure
The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. The pressure difference is caused by the surface tension of the interface between liquid and ...
causes diffusion of gas from small to large bubbles due to pressure difference. In addition, films can break under
disjoining pressure
In surface chemistry, disjoining pressure (symbol ) according to an IUPAC definition arises from an attractive interaction between two surfaces. For two flat and parallel surfaces, the value of the disjoining pressure (i.e., the force per unit are ...
, These effects can lead to rearrangement of the foam structure at scales larger than the bubbles, which may be individual (
T1 process
A T1 process (or topological rearrangement process of the first kind) I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois, F. Rouyer, A. Saint-Jalmes, "Foams: structure and dynamics", Oxford University Press, ed. S.J. Cox, 2013, ...
) or collective (even of the "avalanche" type).
Experiments and characterizations
Being a multi-scale system involving many phenomena, and a versatile medium, foam can be studied using many different techniques. Considering the different scales, experimental techniques are diffraction ones, mainly light scattering techniques (
DWS, see below, static and dynamic light scattering, X-rays and neutron scattering) at sub-micrometer scales, or microscopic ones. Considering the system as continuous, its ''bulk'' properties can be characterized by light transmittance but also conductimetry. The correlation between structure and bulk is evidenced more accurately by acoustics in particular. The organisation between bubbles has been studied numerically using sequential attempts of evolution of the minimum surface energy either at random (Pott's model) or deterministic way (surface evolver). The evolution with time (i.e., the dynamics) can be simulated using these models, or the ''bubble model'' (Durian), which considers the motion of individual bubbles.
Observations of the small-scale structure can be made by shining the foam with laser light or x-ray beams and measuring the reflectivity of the films between bubbles. Observations of the global structure can be done using neutron scattering.
A typical light scattering (or diffusion) optical technique, multiple light scattering coupled with vertical scanning, is the most widely used technique to monitor the dispersion state of a product, hence identifying and quantifying destabilization phenomena. It works on any concentrated dispersions without dilution, including foams. When light is sent through the sample, it is backscattered by the bubbles. The backscattering intensity is directly proportional to the size and volume fraction of the dispersed phase. Therefore, local changes in concentration (drainage,
syneresis) and global changes in size (ripening, coalescence) are detected and monitored.
Applications
Liquid foams
Liquid foams can be used in
fire retardant foam
Firefighting foam is a foam used for fire suppression. Its role is to cool the fire and to coat the fuel, preventing its contact with oxygen, thus achieving suppression of the combustion. Firefighting foam was invented by the Russian engineer an ...
, such as those that are used in extinguishing fires, especially
oil fire
Oil well fires are oil or gas wells that have caught on fire and burn. They can be the result of accidents, arson, or natural events, such as lightning. They can exist on a small scale, such as an oil field spill catching fire, or on a huge scal ...
s.
In some ways, leavened
bread
Bread is a staple food prepared from a dough of flour (usually wheat) and water, usually by baking. Throughout recorded history and around the world, it has been an important part of many cultures' diet. It is one of the oldest human-made f ...
is a foam, as the
yeast
Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constitut ...
causes the bread to rise by producing tiny bubbles of gas in the dough. The dough has traditionally been understood as a closed-cell foam, in which the
pores do not connect with each other. Cutting the dough releases the gas in the bubbles that are cut, but the gas in the rest of the dough cannot escape. When dough is allowed to rise too far, it becomes an open-cell foam, in which the gas pockets are connected. Cutting the dough or the surface otherwise breaking at that point would cause a large volume of gas to escape, and the dough would collapse. The open structure of an over-risen dough is easy to observe: instead of consisting of discrete gas bubbles, the dough consists of a gas space filled with threads of the flour-water paste. Recent research has indicated that the pore structure in bread is 99% interconnected into one large vacuole, thus the closed-cell foam of the moist dough is transformed into an open cell solid foam in the bread.
The unique property of gas-liquid foams having very high specific surface area is exploited in the chemical processes of
froth flotation
Froth flotation is a process for selectively separating hydrophobic materials from hydrophilic. This is used in mineral processing, paper recycling and waste-water treatment industries. Historically this was first used in the mining industry, wher ...
and
foam fractionation Foam fractionation is a chemical process in which hydrophobic molecules are preferentially separated from a liquid solution using rising columns of foam. It is commonly used, albeit on a small scale, for the removal of organic waste from aquariums ...
.
Solid foams
Solid foams are a class of lightweight cellular engineering materials. These foams are typically classified into two types based on their pore structure: open-cell-structured foams (also known as
reticulated foam
Reticulated foam is a very porous, low density solid foam. 'Reticulated' means like a net. Reticulated foams are extremely open foams i.e. there are few, if any, intact bubbles or cell windows. In contrast, the foam formed by soap bubbles is compos ...
s) and closed-cell foams. At high enough cell resolutions, any type can be treated as continuous or "continuum" materials and are referred to as
cellular solid
Cellular may refer to:
*Cellular automaton, a model in discrete mathematics
*Cell biology, the evaluation of cells work and more
* ''Cellular'' (film), a 2004 movie
* Cellular frequencies, assigned to networks operating in cellular RF bands
* Cel ...
s,
with predictable mechanical properties.
Open-cell-structured foams contain pores that are connected to each other and form an interconnected network that is relatively soft. Open-cell foams fill with whatever gas surrounds them. If filled with air, a relatively good insulator results, but, if the open cells fill with water, insulation properties would be reduced. Recent studies have put the focus on studying the properties of open-cell foams as an insulator material. Wheat gluten/TEOS
bio-foams have been produced, showing similar insulator properties as for those foams obtained from oil-based resources. Foam rubber is a type of open-cell foam.
Closed-cell foams do not have interconnected pores. The closed-cell foams normally have higher compressive strength due to their structures. However, closed-cell foams are also, in general more dense, require more material, and as a consequence are more expensive to produce. The closed cells can be filled with a specialized gas to provide improved insulation. The closed-cell structure foams have higher dimensional stability, low moisture absorption coefficients, and higher strength compared to open-cell-structured foams. All types of foam are widely used as core material in
sandwich-structured composite
A sandwich-structured composite is a special class of composite materials that is fabricated by attaching two thin but stiff skins to a lightweight but thick core. The core material is normally low strength material, but its higher thickness provid ...
materials.
The earliest known engineering use of cellular solids is with wood, which in its dry form is a closed-cell foam composed of lignin, cellulose, and air. From the early 20th century, various types of specially manufactured solid foams came into use. The low
density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
of these foams makes them excellent as thermal
insulators
Insulator may refer to:
* Insulator (electricity), a substance that resists electricity
** Pin insulator, a device that isolates a wire from a physical support such as a pin on a utility pole
** Strain insulator, a device that is designed to work ...
and flotation devices and their lightness and compressibility make them ideal as packing materials and stuffings.
An example of the use of azodicarbonamide as a blowing agent is found in the manufacture of
vinyl (PVC) and
EVA-PE foams, where it plays a role in the formation of air bubbles by breaking down into gas at high temperature.
The random or "stochastic" geometry of these foams makes them good for energy absorption, as well. In the late 20th century to early 21st century, new manufacturing techniques have allowed for geometry that results in excellent strength and stiffness per weight. These new materials are typically referred to as engineered cellular solids.
[
]
Syntactic foam
A special class of closed-cell foams, known as syntactic foam, contains hollow particles embedded in a matrix material. The spheres can be made from several materials, including glass, ceramic, and polymer
A polymer (; Greek '' poly-'', "many" + ''-mer'', "part")
is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s. The advantage of syntactic foam
Syntactic foams are composite materials synthesized by filling a metal, polymer, or ceramic matrix with hollow spheres called microballoons or cenospheres or non-hollow spheres (e.g. perlite). In this context, "syntactic" means "put together." ...
s is that they have a very high strength-to-weight ratio, making them ideal materials for many applications, including deep-sea
The deep sea is broadly defined as the ocean depth where light begins to fade, at an approximate depth of 200 metres (656 feet) or the point of transition from continental shelves to continental slopes. Conditions within the deep sea are a combin ...
and space applications. One particular syntactic foam employs shape memory polymer
Shape-memory polymers (SMPs) are polymeric smart materials that have the ability to return from a deformed state (temporary shape) to their original (permanent) shape when induced by an external stimulus (trigger), such as temperature change.
P ...
as its matrix, enabling the foam to take on the characteristics of shape memory resins and composite materials
A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or ...
; i.e., it has the ability to be reshaped repeatedly when heated above a certain temperature and cooled. Shape memory foams have many possible applications, such as dynamic structural support, flexible foam core, and expandable foam fill.
Integral skin foam
''Integral skin foam'', also known as ''self-skin foam'', is a type of foam with a high-density skin and a low-density core. It can be formed in an ''open-mold process'' or a ''closed-mold process''. In the open-mold process, two reactive components are mixed and poured into an open mold. The mold is then closed and the mixture is allowed to expand and cure. Examples of items produced using this process include arm rest
An armrest is a part of a chair, where a person can rest their arms on.
Armrests are built into a large variety of chairs such as automotive chairs, armchairs, sofas, and more. Adjustable armrests are commonly found in ergonomic office chairs.
...
s, baby seat
An infant or baby is the very young offspring of human beings. ''Infant'' (from the Latin word ''infans'', meaning 'unable to speak' or 'speechless') is a formal or specialised synonym for the common term ''baby''. The terms may also be used to ...
s, shoe sole
A shoe is an item of footwear intended to protect and comfort the human foot. They are often worn with a sock. Shoes are also used as an item of decoration and fashion. The design of shoes has varied enormously through time and from culture to ...
s, and mattress
A mattress is a large, usually rectangular pad for supporting a lying person. It is designed to be used as a bed, or on a bed frame as part of a bed. Mattresses may consist of a quilted or similarly fastened case, usually of heavy cloth, conta ...
es. The closed-mold process, more commonly known as ''reaction injection molding
Reaction injection molding (RIM) is similar to injection molding except thermosetting polymers are used, which requires a curing reaction to occur within the mold.
Common items made via RIM include automotive bumpers, air spoilers, and fen ...
'' (RIM), injects the mixed components into a closed mold under high pressures.
Defoaming
Foam, in this case meaning "bubbly liquid", is also produced as an often-unwanted by-product
A by-product or byproduct is a secondary product derived from a production process, manufacturing process or chemical reaction; it is not the primary product or service being produced.
A by-product can be useful and marketable or it can be consid ...
in the manufacture of various substances. For example, foam is a serious problem in the chemical industry
The chemical industry comprises the companies that produce industrial chemicals. Central to the modern world economy, it converts raw materials (oil, natural gas, air, water, metals, and minerals) into more than 70,000 different products. The ...
, especially for biochemical
Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology an ...
processes. Many biological substances, for example protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s, easily create foam on agitation or aeration
Aeration (also called aerification or aeriation) is the Systems engineering process, process by which air is circulated through, mixed with or solvation, dissolved in a liquid or other substances that act as a fluid (such as soil). Aeration proces ...
. Foam is a problem because it alters the liquid flow and blocks oxygen transfer from air (thereby preventing microbial respiration in aerobic
Aerobic means "requiring air," in which "air" usually means oxygen.
Aerobic may also refer to
* Aerobic exercise, prolonged exercise of moderate intensity
* Aerobics, a form of aerobic exercise
* Aerobic respiration, the aerobic process of cellu ...
fermentation
Fermentation is a metabolic process that produces chemical changes in organic substrates through the action of enzymes. In biochemistry, it is narrowly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food ...
processes). For this reason, anti-foaming agents, like silicone
A silicone or polysiloxane is a polymer made up of siloxane (−R2Si−O−SiR2−, where R = organic group). They are typically colorless oils or rubber-like substances. Silicones are used in sealants, adhesives, lubricants, medicine, cooking ...
oils, are added to prevent these problems. Chemical methods of foam control are not always desired with respect to the problems (i.e., contamination
Contamination is the presence of a constituent, impurity, or some other undesirable element that spoils, corrupts, infects, makes unfit, or makes inferior a material, physical body, natural environment, workplace, etc.
Types of contamination
W ...
, reduction of mass transfer
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, ...
) they may cause especially in food and pharmaceutical industries, where the product quality is of great importance. Mechanical methods to prevent foam formation are more common than chemical ones.
Speed of sound
The acoustical property of the speed of sound through a foam is of interest when analyzing failures of hydraulic components. The analysis involves calculating total hydraulic cycles to fatigue failure. The speed of sound in a foam is determined by the mechanical properties of the gas creating the foam: oxygen, nitrogen, or combinations.
Assuming that the speed of sound is based on the liquid's fluid properties leads to errors in calculating fatigue cycles and failure of mechanical hydraulic components. Using acoustical transducers and related instrumentation that set low limits (0–50,000 Hz with roll-off) causes errors. The low roll-off during measurement of actual frequency of acoustic cycles results in miscalculation due to actual hydraulic cycles in the possible ranges of 1–1000 MHz or higher. Instrumentation systems are most revealing when cycle bandwidths exceed the actual measured cycles by a factor of 10 to 100. Associated instrumentation costs also increase by factors of 10 to 100.
Most moving hydro-mechanical components cycle at 0–50 Hz, but entrained gas bubbles resulting in a foamy condition of the associated hydraulic fluid
A hydraulic fluid or hydraulic liquid is the medium by which power is transferred in hydraulic machinery. Common hydraulic fluids are based on mineral oil or water. Examples of equipment that might use hydraulic fluids are excavators and backhoe ...
results in actual hydraulic cycles that can exceed 1000 MHz even if the moving mechanical components do not cycle at the higher cycle frequency.
Gallery
Image:Plankton creates sea foam 2.jpg, Close-up of sea foam
Sea foam, ocean foam, beach foam, or spume is a type of foam created by the agitation of seawater, particularly when it contains higher concentrations of dissolved organic matter (including proteins, lignins, and lipids) derived from sources ...
(decomposing
Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is e ...
plankton
Plankton are the diverse collection of organisms found in Hydrosphere, water (or atmosphere, air) that are unable to propel themselves against a Ocean current, current (or wind). The individual organisms constituting plankton are called plankt ...
) on a tide pool
A tide pool or rock pool is a shallow pool of seawater that forms on the rocky intertidal shore. Many of these pools exist as separate bodies of water only at low tide.
Many tide pool habitats are home to especially adaptable animals that ...
Image:Aluminium foam.jpg, Foamed aluminium
Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
Image:FoamedPlastic.jpg, Micrograph
A micrograph or photomicrograph is a photograph or digital image taken through a microscope or similar device to show a magnified image of an object. This is opposed to a macrograph or photomacrograph, an image which is also taken on a mic ...
of temper
Temper, tempered or tempering may refer to:
Heat treatment
* Tempering (metallurgy), a heat treatment technique to increase the toughness of iron-based alloys
** Temper mill, a steel processing line
* Tempering (spices), a cooking technique where ...
(memory) foam
Image:Silikonschaum riesenblase verfuellungsversuch.jpg, Silicone foam
Silicone foam is a synthetic rubber product used in gasketing, sheets and firestops. It is available in solid, cured form as well as in individual liquid components for field installations.
Uses
*Gaskets
*Sheets
*High temperature tubes for autoc ...
penetration seal
Image:Diet Coke Mentos.jpg, Diet Coke and Mentos foam "geyser"
Image:Foam ball.png, Industrial CT scanning
Industrial computed tomography (CT) scanning is any computer-aided tomographic process, usually X-ray computed tomography, that uses irradiation to produce three-dimensional internal and external representations of a scanned object. Industrial CT ...
of a foam ball
Image:Expanded polystyrene foam dunnage.jpg, Polystyrene foam cushioning
Package cushioning is used to protect items during shipment. Vibration and impact shock during shipment and loading/unloading are controlled by cushioning to reduce the chance of product damage.
Cushioning is usually inside a shipping container s ...
Foam scales and properties
See also
* Aluminium foam sandwich
* Ballistic foam
Ballistic foam is a foam that sets hard. It is widely used in the manufacture and repair of aircraft to form a light but strong filler for aircraft wings. The foam is used to surround aircraft fuel tanks to reduce the chance of fires caused by the ...
* Chaotic bubble
Chaotic bubbles within physics and mathematics, occur in cases when there are any dynamic processes that generate bubbles that are nonlinear. Many exhibit mathematically chaotic patterns consistent with chaos theory. In most systems, they arise ou ...
* Metal foam
Regular foamed aluminium
A metal foam is a cellular structure consisting of a solid metal (frequently aluminium) with gas-filled pores comprising a large portion of the volume. The pores can be sealed (closed-cell foam) or interconnected (open-c ...
* Nanofoam
Nanofoams are a class of nanostructured, porous materials (foams) containing a significant population of pores with diameters less than 100 nm. Aerogels are one example of nanofoam.
Metal
Overview
Metallic nanofoams are a subcategorization ...
* Sea foam
Sea foam, ocean foam, beach foam, or spume is a type of foam created by the agitation of seawater, particularly when it contains higher concentrations of dissolved organic matter (including proteins, lignins, and lipids) derived from sources ...
* Reversibly assembled cellular composite materials
* Foam party
References
Further reading
* Thomas Hipke, Günther Lange, René Poss: Taschenbuch für Aluminiumschäume. Aluminium-Verlag, Düsseldorf 2007, .
* Hannelore Dittmar-Ilgen: Metalle lernen schwimmen. In: Dies.: Wie der Kork-Krümel ans Weinglas kommt. Hirzel, Stuttgart 2006, , S. 74.
External links
* Andrew M. Kraynik, Douglas A. Reinelt, Frank van Swo
Structure of random monodisperse foam
* D. L. Weaire, Stefan Hutzler (1999
The Physics of Foams
*
{{Patterns in nature
Colloids