Etymology and taxonomy
The use of the common names ''frog'' and ''Etymology
The origin of the order name ''Anura''—and its original spelling ''Anoures''—is theTaxonomy
About 88% ofEvolution
The origins and evolutionary relationships between the three main groups of amphibians are hotly debated. A molecular phylogeny based on rDNA analysis dating from 2005 suggests that salamanders and caecilians are more closely related to each other than they are to frogs and thePhylogeny
A cladogram showing the relationships of the differentMorphology and physiology
Frogs have no tail, except as larvae, and most have long hind legs, elongated ankle bones, webbed toes, no claws, large eyes, and a smooth or warty skin. They have short vertebral columns, with no more than 10 free vertebrae and fused tailbones (urostyle or coccyx). Frogs range in size from ''Paedophryne amauensis'' of Papua New Guinea that is in snout–to–Cloaca, vent length to the up to and goliath frog (''Conraua goliath'') of central Africa. There are prehistoric, extinct species that reached even larger sizes.Feet and legs
The structure of the feet and legs varies greatly among frog species, depending in part on whether they live primarily on the ground, in water, in trees, or in burrows. Frogs must be able to move quickly through their environment to catch prey and escape predators, and numerous adaptations help them to do so. Most frogs are either proficient at jumping or are descended from ancestors that were, with much of the musculoskeletal morphology (biology), morphology modified for this purpose. The tibia, fibula, and tarsus (skeleton), tarsals have been fused into a single, strong bone, as have the radius and ulna in the fore limbs (which must absorb the impact on landing). The metatarsals have become elongated to add to the leg length and allow frogs to push against the ground for a longer period on take-off. The ilium (bone), ilium has elongated and formed a mobile joint with the sacrum which, in specialist jumpers such as ranids and hylids, functions as an additional limb joint to further power the leaps. The tail vertebrae have fused into a urostyle which is retracted inside the pelvis. This enables the force to be transferred from the legs to the body during a leap. The muscular system has been similarly modified. The hind limbs of ancestral frogs presumably contained pairs of muscles which would act in opposition (one muscle to flex the knee, a different muscle to extend it), as is seen in most other limbed animals. However, in modern frogs, almost all muscles have been modified to contribute to the action of jumping, with only a few small muscles remaining to bring the limb back to the starting position and maintain posture. The muscles have also been greatly enlarged, with the main leg muscles accounting for over 17% of the total mass of frogs. Many frogs have webbed feet and the degree of webbing is directly proportional to the amount of time the species spends in the water. The completely aquatic African dwarf frog (''Hymenochirus'' sp.) has fully webbed toes, whereas those of White's tree frog (''Litoria caerulea''), an arboreal species, are only a quarter or half webbed. Exceptions include flying frogs in the Hylidae and Rhacophoridae, which also have fully webbed toes used in gliding. Tree frog, Arboreal frogs have pads located on the ends of their toes to help grip vertical surfaces. These are not suction pads, the surface consisting instead of columnar cells with flat tops with small gaps between them lubricated by mucous glands. When the frog applies pressure, the cells adhere to irregularities on the surface and the grip is maintained through Capillarity, surface tension. This allows the frog to climb on smooth surfaces, but the system does not function efficiently when the pads are excessively wet. In many arboreal frogs, a small "intercalary structure" on each toe increases the surface area touching the Substrate (biology), substrate. Furthermore, many arboreal frogs have hip joints that allow both hopping and walking. Some frogs that live high in trees even possess an elaborate degree of webbing between their toes. This allows the frogs to "parachute" or make a controlled glide from one position in the canopy to another. Ground-dwelling frogs generally lack the adaptations of aquatic and arboreal frogs. Most have smaller toe pads, if any, and little webbing. Some burrowing frogs such as Couch's Spadefoot Toad, Couch's spadefoot (''Scaphiopus couchii'') have a flap-like toe extension on the hind feet, aSkin
A frog's skin is protective, has a respiratory function, can absorb water, and helps control body temperature. It has many glands, particularly on the head and back, which often exude distasteful and toxic substances (Skin, granular glands). The secretion is often sticky and helps keep the skin moist, protects against the entry of moulds and bacteria, and make the animal slippery and more able to escape from predators. The skin is shed every few weeks. It usually splits down the middle of the back and across the belly, and the frog pulls its arms and legs free. The sloughed skin is then worked towards the head where it is quickly eaten. Being cold-blooded, frogs have to adopt suitable behaviour patterns to regulate their temperature. To warm up, they can move into the sun or onto a warm surface; if they overheat, they can move into the shade or adopt a stance that exposes the minimum area of skin to the air. This posture is also used to prevent water loss and involves the frog squatting close to the substrate with its hands and feet tucked under its chin and body. The colour of a frog's skin is used for thermoregulation. In cool damp conditions, the colour will be darker than on a hot dry day. The Grey Foam-nest Treefrog, grey foam-nest tree frog (''Chiromantis xerampelina'') is even able to turn white to minimize the chance of overheating. Many frogs are able to absorb water and oxygen directly through the skin, especially around the pelvic area, but the permeability of a frog's skin can also result in water loss. Glands located all over the body exude mucus which helps keep the skin moist and reduces evaporation. Some glands on the hands and chest of males are specialized to produce sticky secretions to aid in amplexus. Similar glands in tree frogs produce a glue-like substance on the adhesive discs of the feet. Some arboreal frogs reduce water loss by having a waterproof layer of skin, and several South American species coat their skin with a waxy secretion. Other frogs have adopted behaviours to conserve water, including becoming nocturnal and resting in a water-conserving position. Some frogs may also rest in large groups with each frog pressed against its neighbours. This reduces the amount of skin exposed to the air or a dry surface, and thus reduces water loss. Woodhouse's toad (''Bufo woodhousii''), if given access to water after confinement in a dry location, sits in the shallows to rehydrate. The male Hairy Frog, hairy frog (''Trichobatrachus robustus'') has dermal papillae projecting from its lower back and thighs, giving it a bristly appearance. They contain blood vessels and are thought to increase the area of the skin available for respiration. Some species have Osteoderm, bony plates embedded in their skin, a trait that appears to have evolved independently several times. In certain other species, the skin at the top of the head is compacted and the connective tissue of the dermis is co-ossified with the bones of the skull (exostosis). Camouflage is a common defensive mechanism in frogs. Features such as warts and skin folds are usually on ground-dwelling frogs, for whom smooth skin would not provide such effective camouflage. Certain frogs change colour between night and day, as light and moisture stimulate the pigment cells and cause them to expand or contract. Some are even able to control their skin texture. The Pacific tree frog (''Pseudacris regilla'') has green and brown morphs, plain or spotted, and changes colour depending on the time of year and general background colour.Respiration and circulation
Like other amphibians, oxygen can pass through their highly permeable skins. This unique feature allows them to remain in places without access to the air, respiring through their skins. Ribs are generally absent, so the lungs are filled by buccal pumping and a frog deprived of its lungs can maintain its body functions without them. The fully aquatic Bornean flat-headed frog (''Barbourula kalimantanensis'') is the first frog known to lack lungs entirely. Frogs have three-chambered hearts, a feature they share with lizards. Oxygenated blood from the lungs and de-oxygenated blood from the Respiration (physiology), respiring tissues enter the heart through separate atrium (anatomy), atria. When these chambers contract, the two blood streams pass into a common Ventricle (heart), ventricle before being pumped via a spiral valve to the appropriate vessel, the aorta for oxygenated blood and pulmonary artery for deoxygenated blood. Some species of frog have adaptations that allow them to survive in oxygen deficient water. The Titicaca water frog (''Telmatobius culeus'') is one such species and has wrinkly skin that increases its surface area to enhance gas exchange. It normally makes no use of its rudimentary lungs but will sometimes raise and lower its body rhythmically while on the lake bed to increase the flow of water around it.Digestion and excretion
Frogs have maxillary teeth along their upper jaw which are used to hold food before it is swallowed. These teeth are very weak, and cannot be used to chew or catch and harm agile prey. Instead, the frog uses its sticky, cleft tongue to catch flies and other small moving prey. The tongue normally lies coiled in the mouth, free at the back and attached to the mandible at the front. It can be shot out and retracted at great speed. Some frogs have no tongue and just stuff food into their mouths with their hands. The African bullfrog (''Pyxicephalus''), which preys on relatively large animals such as mice and other frogs, has cone shaped bony projections called odontoid processes at the front of the lower jaw which function like teeth. The eyes assist in the swallowing of food as they can be retracted through holes in the skull and help push food down the throat. The food then moves through the oesophagus into the stomach where digestive enzymes are added and it is churned up. It then proceeds to the small intestine (duodenum and ileum) where most digestion occurs. Pancreatic juice from the pancreas, and bile, produced by the liver and stored in the gallbladder, are secreted into the small intestine, where the fluids digest the food and the nutrients are absorbed. The food residue passes into the large intestine where excess water is removed and the wastes are passed out through the cloaca. Although adapted to terrestrial life, frogs resemble freshwater fish in their inability to conserve body water effectively. When they are on land, much water is lost by evaporation from the skin. The excretory system is similar to that of mammals and there are two kidneys that remove nitrogenous products from the blood. Frogs produce large quantities of dilute urine in order to flush out toxic products from the kidney tubules. The nitrogen is excreted as ammonia by tadpoles and aquatic frogs but mainly as urea, a less toxic product, by most terrestrial adults. A few species of tree frog with little access to water excrete the even less toxic uric acid. The urine passes along paired ureters to the urinary bladder from which it is vented periodically into the cloaca. All bodily wastes exit the body through the cloaca which terminates in a cloacal vent.Reproductive system
In the male frog, the two Testis, testes are attached to the kidneys and semen passes into the kidneys through fine tubes called efferent ducts. It then travels on through the ureters, which are consequently known as urinogenital ducts. There is no penis, and sperm is ejected from the cloaca directly onto the eggs as the female lays them. The ovaries of the female frog are beside the kidneys and the eggs pass down a pair of oviducts and through the cloaca to the exterior. When frogs mate, the male climbs on the back of the female and wraps his fore limbs round her body, either behind the front legs or just in front of the hind legs. This position is called amplexus and may be held for several days. The male frog has certain hormone-dependent secondary sexual characteristics. These include the development of special pads on his thumbs in the breeding season, to give him a firm hold. The grip of the male frog during amplexus stimulates the female to release eggs, usually wrapped in jelly, as spawn. In many species the male is smaller and slimmer than the female. Males have vocal cords and make a range of croaks, particularly in the breeding season, and in some species they also have vocal sacs to amplify the sound.Nervous system
Frogs have a highly developed nervous system that consists of a brain, spinal cord and nerves. Many parts of frog brains correspond with those of humans. It consists of two olfactory lobes, two cerebral hemispheres, a pineal body, two optic lobes, a cerebellum and a medulla oblongata. Muscular coordination and posture are controlled by the cerebellum, and the medulla oblongata regulates respiration, digestion and other automatic functions. The relative size of the cerebrum in frogs is much smaller than it is in humans. Frogs have ten pairs of cranial nerves which pass information from the outside directly to the brain, and ten pairs of spinal nerves which pass information from the extremities to the brain through the spinal cord. By contrast, all amniotes (mammals, birds and reptiles) have twelve pairs of cranial nerves.Sight
The eyes of most frogs are located on either side of the head near the top and project outwards as hemispherical bulges. They provide binocular vision over a field of 100° to the front and a total visual field of almost 360°. They may be the only part of an otherwise submerged frog to protrude from the water. Each eye has closable upper and lower lids and a nictitating membrane which provides further protection, especially when the frog is swimming. Members of the aquatic family Pipidae have the eyes located at the top of the head, a position better suited for detecting prey in the water above. The iris (anatomy), irises come in a range of colours and the pupils in a range of shapes. The common toad (''Bufo bufo'') has golden irises and horizontal slit-like pupils, the Agalychnis callidryas, red-eyed tree frog (''Agalychnis callidryas'') has vertical slit pupils, the poison dart frog has dark irises, the fire-bellied toad (''Bombina spp.'') has triangular pupils and the Dyscophus antongilii, tomato frog (''Dyscophus spp.'') has circular ones. The irises of the southern toad (''Anaxyrus terrestris'') are patterned so as to blend in with the surrounding camouflaged skin. The distant vision of a frog is better than its near vision. Calling frogs will quickly become silent when they see an intruder or even a moving shadow but the closer an object is, the less well it is seen. When a frog shoots out its tongue to catch an insect it is reacting to a small moving object that it cannot see well and must line it up precisely beforehand because it shuts its eyes as the tongue is extended. Although it was formerly debated, more recent research has shown that frogs can see in colour, even in very low light.Hearing
Frogs can hear both in the air and below water. They do not have Pinnae, external ears; the eardrums (Tympanum (anatomy), tympanic membranes) are directly exposed or may be covered by a layer of skin and are visible as a circular area just behind the eye. The size and distance apart of the eardrums is related to the frequency and wavelength at which the frog calls. In some species such as the bullfrog, the size of the tympanum indicates the sex of the frog; males have tympani that are larger than their eyes while in females, the eyes and tympani are much the same size. A noise causes the tympanum to vibrate and the sound is transmitted to the middle and inner ear. The middle ear contains semicircular canals which help control balance and orientation. In the inner ear, the auditory hair cells are arranged in two areas of the cochlea, the basilar papilla and the amphibian papilla. The former detects high frequencies and the latter low frequencies. Because the cochlea is short, frogs use electrical tuning to extend their range of audible frequencies and help discriminate different sounds. This arrangement enables detection of the territorial and breeding calls of their Conspecificity, conspecifics. In some species that inhabit arid regions, the sound of thunder or heavy rain may arouse them from a dormant state. A frog may be startled by an unexpected noise but it will not usually take any action until it has located the source of the sound by sight.Call
The call or croak of a frog is unique to its species. Frogs create this sound by passing air through the larynx in the throat. In most calling frogs, the sound is amplified by one or more vocal sacs, membranes of skin under the throat or on the corner of the mouth, that distend during the amplification of the call. Some frog calls are so loud that they can be heard up to a mile (1.6km) away. Additionally, some species have been found to use man-made structures such as drain pipes for artificial amplification of their call. The Ascaphus truei, coastal tailed frog (''Ascaphus truei'') lives in mountain streams in North America and does not vocalize. The main function of calling is for male frogs to attract mates. Males may call individually or there may be a chorus of sound where numerous males have converged on breeding sites. In many frog species, such as the Common Tree Frog, common tree frog (''Polypedates leucomystax''), females reply to males' calls, which acts to reinforce reproductive activity in a breeding colony. Female frogs prefer males that produce sounds of greater intensity and lower frequency, attributes that stand out in a crowd. The rationale for this is thought to be that by demonstrating his prowess, the male shows his fitness to produce superior offspring. A different call is emitted by a male frog or unreceptive female when mounted by another male. This is a distinct chirruping sound and is accompanied by a vibration of the body. Tree frogs and some non-aquatic species have a rain call that they make on the basis of humidity cues prior to a shower. Many species also have a territorial call that is used to drive away other males. All of these calls are emitted with the mouth of the frog closed. A distress call, emitted by some frogs when they are in danger, is produced with the mouth open resulting in a higher-pitched call. It is typically used when the frog has been grabbed by a predator and may serve to distract or disorient the attacker so that it releases the frog. file:Banded_Bull_Frog_Call.ogg, left, Distinctive low "jug-o-rum" sound of banded bullfrog. Many species of frog have deep calls. The croak of the American bullfrog (''Rana catesbiana'') is sometimes written as "jug o' rum". The Pacific Tree Frog, Pacific tree frog (''Pseudacris regilla'') produces the onomatopoeia, onomatopoeic "ribbit" often heard in films. Other renderings of frog calls into speech include "brekekekex koax koax", the call of the marsh frog (''Pelophylax ridibundus'') in ''The Frogs'', an Ancient Greek comic drama by Aristophanes. The calls of the Concave-eared torrent frog (''Amolops tormotus'') are unusual in many aspects. The males are notable for their varieties of calls where upward and downward frequency modulations take place. When they communicate, they produce calls that fall in the ultrasound frequency range. The last aspect that makes this species of frog's calls unusual is that nonlinear acoustic phenomena are important components in their acoustic signals.Torpor
During extreme conditions, some frogs enter a state of torpor and remain inactive for months. In colder regions, many species of frog Hibernation, hibernate in winter. Those that live on land such as the American toad (''Bufo americanus'') dig a burrow and make a Hibernaculum (zoology), hibernaculum in which to lie Dormancy, dormant. Others, less proficient at digging, find a crevice or bury themselves in dead leaves. Aquatic species such as the American bullfrog (''Rana catesbeiana'') normally sink to the bottom of the pond where they lie, semi-immersed in mud but still able to access the oxygen dissolved in the water. Their metabolism slows down and they live on their energy reserves. Some frogs such as the wood frog, moor frog, or spring peeper can even survive being frozen. Ice crystals form under the skin and in the body cavity but the essential organs are protected from freezing by a high concentration of glucose. An apparently lifeless, frozen frog can resume respiration and its heartbeat can restart when conditions warm up. At the other extreme, the striped burrowing frog (''Cyclorana alboguttata'') regularly Aestivation, aestivates during the hot, dry season in Australia, surviving in a dormant state without access to food and water for nine or ten months of the year. It burrows underground and curls up inside a protective Cocoon (silk), cocoon formed by its shed skin. Researchers at the University of Queensland have found that during aestivation, the metabolism of the frog is altered and the operational efficiency of the mitochondria is increased. This means that the limited amount of energy available to the comatose frog is used in a more efficient manner. This survival mechanism is only useful to animals that remain completely unconscious for an extended period of time and whose energy requirements are low because they are cold-blooded and have no need to generate heat. Other research showed that, to provide these energy requirements, muscles atrophy, but hind limb muscles are preferentially unaffected. Frogs have been found to have upper critical temperatures of around 41 degrees Celsius.Locomotion
Different species of frog use a number of methods of moving around including jumping, running, walking, aquatic locomotion, swimming, burrowing, climbing and Flying frog, gliding. ;Jumping Frogs are generally recognized as exceptional jumpers and, relative to their size, the best jumpers of all vertebrates. The striped rocket frog, ''Litoria nasuta'', can leap over , a distance that is more than fifty times its body length of . There are tremendous differences between species in jumping capability. Within a species, jump distance increases with increasing size, but relative jumping distance (body-lengths jumped) decreases. The Euphlyctis cyanophlyctis, Indian skipper frog (''Euphlyctis cyanophlyctis'') has the ability to leap out of the water from a position floating on the surface. The tiny northern cricket frog (''Acris crepitans'') can "skitter" across the surface of a pond with a series of short rapid jumps. Slow-motion photography shows that the muscles have passive flexibility. They are first stretched while the frog is still in the crouched position, then they are contracted before being stretched again to launch the frog into the air. The fore legs are folded against the chest and the hind legs remain in the extended, streamlined position for the duration of the jump. In some extremely capable jumpers, such as the Cuban tree frog (''Osteopilus septentrionalis'') and the northern leopard frog (''Rana pipiens''), the peak power exerted during a jump can exceed that which the muscle is theoretically capable of producing. When the muscles contract, the energy is first transferred into the stretched tendon which is wrapped around the ankle bone. Then the muscles stretch again at the same time as the tendon releases its energy like a catapult to produce a powerful acceleration beyond the limits of muscle-powered acceleration. A similar mechanism has been documented in locusts and grasshoppers. Early hatching of froglets can have negative effects on frog jumping performance and overall locomotion. The hindlimbs are unable to completely form, which results in them being shorter and much weaker relative to a normal hatching froglet. Early hatching froglets may tend to depend on other forms of locomotion more often, such as swimming and walking. ;Walking and running Frogs in the families Bufonidae, Rhinophrynidae, andLife history
Reproduction
Two main types of reproduction occur in frogs, prolonged breeding and explosive breeding. In the former, adopted by the majority of species, adult frogs at certain times of year assemble at a pond, lake or stream to breed. Many frogs return to the bodies of water in which they developed as larvae. This often results in annual migrations involving thousands of individuals. In explosive breeders, mature adult frogs arrive at breeding sites in response to certain trigger factors such as rainfall occurring in an arid area. In these frogs, mating and spawning take place promptly and the speed of larval growth is rapid in order to make use of the ephemeral pools before they dry up. Among prolonged breeders, males usually arrive at the breeding site first and remain there for some time whereas females tend to arrive later and depart soon after they have spawned. This means that males outnumber females at the water's edge and defend territories from which they expel other males. They advertise their presence by calling, often alternating their croaks with neighbouring frogs. Larger, stronger males tend to have deeper calls and maintain higher quality territories. Females select their mates at least partly on the basis of the depth of their voice. In some species there are satellite males who have no territory and do not call. They may intercept females that are approaching a calling male or take over a vacated territory. Calling is an energy-sapping activity. Sometimes the two roles are reversed and a calling male gives up its territory and becomes a satellite. In explosive breeders, the first male that finds a suitable breeding location, such as a temporary pool, calls loudly and other frogs of both sexes converge on the pool. Explosive breeders tend to call in unison creating a chorus that can be heard from far away. The spadefoot toads (''Scaphiopus spp.'') of North America fall into this category. Mate selection and courtship is not as important as speed in reproduction. In some years, suitable conditions may not occur and the frogs may go for two or more years without breeding. Some female New Mexico Spadefoot Toad, New Mexico spadefoot toads (''Spea multiplicata'') only spawn half of the available eggs at a time, perhaps retaining some in case a better reproductive opportunity arises later. At the breeding site, the male mounts the female and grips her tightly round the body. Typically, amplexus takes place in the water, the female releases her eggs and the male covers them with sperm; fertilization is external fertilization, external. In many species such as the Great Plains toad (''Bufo cognatus''), the male restrains the eggs with his back feet, holding them in place for about three minutes. Members of the West African genus ''Nimbaphrynoides'' are unique among frogs in that they are Viviparity, viviparous; ''Limnonectes larvaepartus'', ''Eleutherodactylus jasperi'' and members of the Tanzanian genus ''Nectophrynoides'' are the only frogs known to be Ovoviviparity, ovoviviparous. In these species, fertilization is Internal fertilization, internal and females give birth to fully developed juvenile frogs, except ''L. larvaepartus'', which give birth to tadpoles.Life cycle
Eggs / frogspawn
Frogs may lay their in eggs as clumps, surface films, strings, or individually. Around half of species deposit eggs in water, others lay eggs in vegetation, on the ground or in excavations. The tiny Yellow-Striped Pygmy Eleuth, yellow-striped pygmy eleuth (''Eleutherodactylus limbatus'') lays eggs singly, burying them in moist soil. The Smoky Jungle Frog, smoky jungle frog (''Leptodactylus pentadactylus'') makes a nest of foam in a hollow. The eggs hatch when the nest is flooded, or the tadpoles may complete their development in the foam if flooding does not occur. The red-eyed treefrog (''Agalychnis callidryas'') deposits its eggs on a leaf above a pool and when they hatch, the larvae fall into the water below. In certain species, such as the wood frog (''Rana sylvatica''), Symbiosis, symbiotic unicellular green algae are present in the gelatinous material. It is thought that these may benefit the developing larvae by providing them with extra oxygen through photosynthesis. The interior of globular egg clusters of the Wood Frog, wood frog has been also been found to be up to 6 °C (11 °F) warmer than the surrounding water and this speeds up the development of the larvae. The larvae developing in the eggs can detect vibrations caused by nearby predatory wasps or snakes, and will hatch early to avoid being eaten. In general, the length of the egg stage depends on the species and the environmental conditions. Aquatic eggs normally hatch within one week when the capsule splits as a result of enzymes released by the developing larvae. Direct development, where eggs hatch into juveniles like small adults, is also known in many frogs, for example, ''Ischnocnema henselii,'' ''Common coquí, Eleutherodactylus coqui'', and ''Raorchestes ochlandrae'' and ''Raorchestes chalazodes.''Tadpoles
The larvae that emerge from the eggs, known as tadpoles (or occasionally polliwogs). Tadpoles lack eyelids and limbs, and have cartilaginous skeletons, gills for respiration (external gills at first, internal gills later), and tails they use for swimming. As a general rule, free-living larvae are fully aquatic, but at least one species (''Nannophrys ceylonensis'') has semiterrestrial tadpoles which live among wet rocks. From early in its development, a gill pouch covers the tadpole's gills and front legs. The lungs soon start to develop and are used as an accessory breathing organ. Some species go through metamorphosis while still inside the egg and hatch directly into small frogs. Tadpoles lack true teeth, but the jaws in most species have two elongated, parallel rows of small,Metamorphosis
At the end of the tadpole stage, a frog undergoes metamorphosis in which its body makes a sudden transition into the adult form. This metamorphosis typically lasts only 24 hours, and is initiated by production of the hormone thyroxine. This causes different tissues to develop in different ways. The principal changes that take place include the development of the lungs and the disappearance of the gills and gill pouch, making the front legs visible. The lower jaw transforms into the big mandible of the carnivorous adult, and the long, spiral gut of the herbivorous tadpole is replaced by the typical short gut of a predator. The nervous system becomes adapted for hearing and stereoscopic vision, and for new methods of locomotion and feeding. The eyes are repositioned higher up on the head and the eyelids and associated glands are formed. The eardrum, middle ear, and inner ear are developed. The skin becomes thicker and tougher, the lateral line system is lost, and skin glands are developed. The final stage is the disappearance of the tail, but this takes place rather later, the tissue being used to produce a spurt of growth in the limbs. Frogs are at their most vulnerable to predators when they are undergoing metamorphosis. At this time, the tail is being lost and locomotion by means of limbs is only just becoming established.Adults
Adult frogs may live in or near water, but few are fully aquatic. Almost all frog species are carnivore, carnivorous as adults, preying on invertebrates, including insects, crabs, spiders, mites, annelid, worms, snails, and slugs. A few of the larger ones may eat other frogs, small mammals and reptiles, and fish. A few species also eat plant matter; the tree frog ''Xenohyla truncata'' is partly herbivorous, its diet including a large proportion of fruit, ''Leptodactylus mystaceus'' has been found to eat plants, and folivory occurs in ''Euphlyctis hexadactylus'', with plants constituting 79.5% of its diet by volume. Many frogs use their sticky tongues to catch prey, while others simply grab them with their mouths. Adult frogs are themselves attacked by many predators. The northern leopard frog (''Rana pipiens'') is eaten by herons, hawks, fish, large salamanders, snakes, raccoons, skunks, mink, bullfrogs, and other animals. Frogs are primary predators and an important part of the food web. Being Ectotherm, cold-blooded, they make efficient use of the food they eat with little energy being used for metabolic processes, while the rest is transformed into biomass (ecology), biomass. They are themselves eaten by secondary predators and are the primary terrestrial consumers of invertebrates, most of which feed on plants. By reducing herbivory, they play a part in increasing the growth of plants and are thus part of a delicately balanced ecosystem. Little is known about the longevity of frogs and toads in the wild, but some can live for many years. Skeletochronology is a method of examining bones to determine age. Using this method, the ages of mountain yellow-legged frogs (''Rana muscosa'') were studied, the phalanges of the toes showing seasonal lines where growth slows in winter. The oldest frogs had ten bands, so their age was believed to be 14 years, including the four-year tadpole stage. Captive frogs and toads have been recorded as living for up to 40 years, an age achieved by a European common toad (''Bufo bufo''). The cane toad (''Bufo marinus'') has been known to survive 24 years in captivity, and the American bullfrog (''Rana catesbeiana'') 14 years. Frogs from temperate climates hibernate during the winter, and four species are known to be able to withstand freezing during this time, including the wood frog (''Rana sylvatica'').Parental care
Although care of offspring is poorly understood in frogs, up to an estimated 20% of amphibian species may care for their young in some way. The evolution of biparental care in tropical frogs, evolution of parental care in frogs is driven primarily by the size of the water body in which they breed. Those that breed in smaller water bodies tend to have greater and more complex parental care behaviour. Because predation of eggs and larvae is high in large water bodies, some frog species started to lay their eggs on land. Once this happened, the desiccating terrestrial environment demands that one or both parents keep them moist to ensure their survival. The subsequent need to transport hatched tadpoles to a water body required an even more intense form of parental care. In small pools, predators are mostly absent and competition between tadpoles becomes the variable that constrains their survival. Certain frog species avoid this competition by making use of smaller phytotelmata (water-filled leaf wikt:axil, axils or small woody cavities) as sites for depositing a few tadpoles. While these smaller rearing sites are free from competition, they also lack sufficient nutrients to support a tadpole without parental assistance. Frog species that changed from the use of larger to smaller phytotelmata have evolved a strategy of providing their offspring with nutritive but unfertilized eggs. The female strawberry poison-dart frog (''Oophaga pumilio'') lays her eggs on the forest floor. The male frog guards them from predation and carries water in his cloaca to keep them moist. When they hatch, the female moves the tadpoles on her back to a water-holding bromeliad or other similar water body, depositing just one in each location. She visits them regularly and feeds them by laying one or two unfertilized eggs in the phytotelma, continuing to do this until the young are large enough to undergo metamorphosis. The granular poison frog (''Oophaga granulifera'') looks after its tadpoles in a similar way. Many other diverse forms of parental care are seen in frogs. The tiny male ''Colostethus subpunctatus'' stands guard over his egg cluster, laid under a stone or log. When the eggs hatch, he transports the tadpoles on his back to a temporary pool, where he partially immerses himself in the water and one or more tadpoles drop off. He then moves on to another pool. The male common midwife toad (''Alytes obstetricans'') carries the eggs around with him attached to his hind legs. He keeps them damp in dry weather by immersing himself in a pond, and prevents them from getting too wet in soggy vegetation by raising his hindquarters. After three to six weeks, he travels to a pond and the eggs hatch into tadpoles. The tungara frog (''Physalaemus pustulosus'') builds a floating nest from foam to protect its eggs from predation. The foam is made from proteins and lectins, and seems to have antimicrobial properties. Several pairs of frogs may form a colonial nest on a previously built raft. The eggs are laid in the centre, followed by alternate layers of foam and eggs, finishing with a foam capping. Some frogs protect their offspring inside their own bodies. Both male and female pouched frogs (''Assa darlingtoni'') guard their eggs, which are laid on the ground. When the eggs hatch, the male lubricates his body with the jelly surrounding them and immerses himself in the egg mass. The tadpoles wriggle into skin pouches on his side, where they develop until they metamorphose into juvenile frogs. The female gastric-brooding frog (''Rheobatrachus'' sp.) from Australia, now probably extinct, swallows her fertilized eggs, which then develop inside her stomach. She ceases to feed and stops secreting stomach acid. The tadpoles rely on the yolks of the eggs for nourishment. After six or seven weeks, they are ready for metamorphosis. The mother regurgitates the tiny frogs, which hop away from her mouth. The female Darwin's frog (''Rhinoderma darwinii'') from Chile lays up to 40 eggs on the ground, where they are guarded by the male. When the tadpoles are about to hatch, they are engulfed by the male, which carries them around inside his much-enlarged vocal sac. Here they are immersed in a frothy, viscous liquid that contains some nourishment to supplement what they obtain from the yolks of the eggs. They remain in the sac for seven to ten weeks before undergoing metamorphosis, after which they move into the male's mouth and emerge.Defence
At first sight, frogs seem rather defenceless because of their small size, slow movement, thin skin, and lack of defensive structures, such as spines, claws or teeth. Many use camouflage to avoid detection, the skin often being spotted or streaked in neutral colours that allow a stationary frog to merge into its surroundings. Some can make prodigious leaps, often into water, that help them to evade potential attackers, while many have other defensive adaptations and strategies. The skin of many frogs contains mild toxic substances called bufotoxins to make them unpalatable to potential predators. Most toads and some frogs have large poison glands, the parotoid glands, located on the sides of their heads behind the eyes and other glands elsewhere on their bodies. These glands secrete mucus and a range of toxins that make frogs slippery to hold and distasteful or poisonous. If the noxious effect is immediate, the predator may cease its action and the frog may escape. If the effect develops more slowly, the predator may learn to avoid that species in future. Poisonous frogs tend to advertise their toxicity with bright colours, an adaptive strategy known as aposematism. The Poison dart frog, poison dart frogs in the family Dendrobatidae do this. They are typically red, orange, or yellow, often with contrasting black markings on their bodies. ''Allobates zaparo'' is not poisonous, but mimics the appearance of two different toxic species with which it shares a common range in an effort to deceive predators. Other species, such as the European Fire-bellied Toad, European fire-bellied toad (''Bombina bombina''), have their warning colour underneath. They "flash" this when attacked, adopting a pose that exposes the vivid colouring on their bellies. Some frogs, such as the poison dart frogs, are especially toxic. The native peoples of South America extract poison from these frogs to apply to their Dart (missile), weapons for hunting, although few species are toxic enough to be used for this purpose. At least two non-poisonous frog species in tropical America (''Eleutherodactylus, Eleutherodactylus gaigei'' and ''Lithodytes lineatus'') Batesian mimicry, mimic the colouration of dart poison frogs for self-protection. Some frogs obtain poisons from the ants and other arthropods they eat. Others, such as the Australian corroboree frogs (''Pseudophryne corroboree'' and ''Pseudophryne pengilleyi''), can synthesize the alkaloids themselves. The chemicals involved may be irritants, hallucinogens, seizure, convulsants, neurotoxin, nerve poisons or vasoconstrictors. Many predators of frogs have become adapted to tolerate high levels of these poisons, but other creatures, including humans who handle the frogs, may be severely affected. Some frogs use bluff or deception. The European common toad (''Bufo bufo'') adopts a characteristic stance when attacked, inflating its body and standing with its hindquarters raised and its head lowered. The bullfrog (''Rana catesbeiana'') crouches down with eyes closed and head tipped forward when threatened. This places the parotoid glands in the most effective position, the other glands on its back begin to ooze noxious secretions and the most vulnerable parts of its body are protected. Another tactic used by some frogs is to "scream", the sudden loud noise tending to startle the predator. The gray tree frog (''Hyla versicolor'') makes an explosive sound that sometimes repels the shrew ''Blarina brevicauda''. Although toads are avoided by many predators, the Common Garter Snake, common garter snake (''Thamnophis sirtalis'') regularly feeds on them. The strategy employed by juvenile American toads (''Bufo americanus'') on being approached by a snake is to crouch down and remain immobile. This is usually successful, with the snake passing by and the toad remaining undetected. If it is encountered by the snake's head, however, the toad hops away before crouching defensively.Distribution
Frogs live on all the continents except Antarctica, but they are not present on certain islands, especially those far away from continental land masses. Many species are isolated in restricted ranges by changes of climate or inhospitable territory, such as stretches of sea, mountain ridges, deserts, forest clearance, road construction, or other man-made barriers. Usually, a greater diversity of frogs occurs in tropical areas than in temperate regions, such as Europe. Some frogs inhabit arid areas, such as deserts, and rely on specific adaptations to survive. Members of the Australian genus ''Cyclorana'' bury themselves underground where they create a water-impervious cocoon in which to aestivation, aestivate during dry periods. Once it rains, they emerge, find a temporary pool, and breed. Egg and tadpole development is very fast in comparison to those of most other frogs, so breeding can be completed before the pond dries up. Some frog species are adapted to a cold environment. The wood frog (''Rana sylvatica''), whose habitat extends into the Arctic Circle, buries itself in the ground during winter. Although much of its body freezes during this time, it maintains a high concentration of glucose in its vital organs, which protects them from damage.Conservation
In 2006, of 4,035 species of amphibians that depend on water during some lifecycle stage, 1,356 (33.6%) were considered to be threatened. This is likely to be an underestimate because it excludes 1,427 species for which evidence was insufficient to assess their status. Frog populations have declined dramatically since the 1950s. More than one-third of frog species are considered to be threatened with extinction, and more than 120 species are believed to have become extinct since the 1980s. Among these species are the gastric-brooding frogs of Australia and the golden toad of Costa Rica. The latter is of particular concern to scientists because it inhabited the pristine Monteverde Cloud Forest Reserve and its population crashed in 1987, along with about 20 other frog species in the area. This could not be linked directly to human activities, such as deforestation, and was outside the range of normal fluctuations in population size. Elsewhere, habitat loss is a significant cause of frog population decline, as are pollutants, climate change, increased ultraviolet, UVB radiation, and the introduction of Indigenous (ecology), non-native predators and competitors. A Canadian study conducted in 2006 suggested heavy traffic in their environment was a larger threat to frog populations than was habitat loss. Emerging infectious diseases, including chytridiomycosis and ranavirus, are also devastating populations. Many environmental scientists believe amphibians, including frogs, are good biological indicator species, indicators of broaderHuman uses
Culinary
Frog legs are eaten by humans in many parts of the world. Indonesia is the world's largest exporter of frog meat, exporting more than 5,000 tonnes of frog meat each year, mostly to France, Belgium and Luxembourg.̺ Originally, they were supplied from local wild populations, but overexploitation led to a diminution in the supply. This resulted in the development of Aquaculture, frog farming and a global trade in frogs. The main importing countries are France, Belgium, Luxembourg, and the United States, while the chief exporting nations are Indonesia and China. The annual global trade in the American bullfrog (''Rana catesbeiana''), mostly farmed in China, varies between 1200 and 2400 tonnes. The Leptodactylus fallax, mountain chicken frog, so-called as it tastes of chicken, is now endangered, in part due to human consumption, and was a major food choice of the Dominicans. Coon, possum, partridges, prairie hen, and frogs were among the fare Mark Twain recorded as part of American cuisine.Scientific research
In November, 1970, NASA sent two bullfrogs into space for six days during the Orbiting Frog Otolith mission to test weightlessness. Frogs are used for dissections in high school and university anatomy classes, often first being injected with coloured substances to enhance contrasts among the biological systems. This practice is declining due to animal welfare concerns, and "digital frogs" are now available for virtual dissection. Frogs have served as Animal testing, experimental animals throughout the history of science. Eighteenth-century biologist Luigi Galvani discovered the link between electricity and the nervous system by studying frogs. He created Frog galvanometer, one of the first tools for measuring electric current out of a frog leg. In 1852, H. F. Stannius used a frog's heart in a procedure called a Stannius ligature to demonstrate the ventricle and atria beat independently of each other and at different rates. The African clawed frog or platanna (''Xenopus laevis'') was first widely used in laboratories in pregnancy tests in the first half of the 20th century. A sample of urine from a pregnant woman injected into a female frog induces it to lay eggs, a discovery made by English zoologist Lancelot Hogben. This is because a hormone, human chorionic gonadotropin, is present in substantial quantities in the urine of women during pregnancy. In 1952, Robert William Briggs, Robert Briggs and Thomas J. King cloned a frog by somatic cell nuclear transfer. This same technique was later used to create Dolly (sheep), Dolly the sheep, and their experiment was the first time a successful nuclear transplantation had been accomplished in higher animals. Frogs are used in cloning research and other branches of embryology. Although alternative pregnancy tests have been developed, biologists continue to use ''Xenopus'' as a model organism in developmental biology because their embryos are large and easy to manipulate, they are readily obtainable, and can easily be kept in the laboratory. ''Xenopus laevis'' is increasingly being displaced by its smaller relative, ''Xenopus tropicalis'', which reaches its reproductive age in five months rather than the one to two years for ''X. laevis'', thus facilitating faster studies across generations. Genomes of ''Xenopus laevis'', ''X. tropicalis'', ''Rana catesbeiana'', ''Rhinella marina'', and ''Nanorana parkeri'' have been sequenced and deposited in the National Center for Biotechnology Information, NCBI Genome database.As pets
Due to being inexpensive and relatively easy to care for, many species of frogs and toads have become popular as exotic pets. They are undemanding and require low maintenance. Both frogs and toads can be housed in paludariums, terrariums and aquariums.Pharmaceutical
Because frog toxins are extraordinarily diverse, they have raised the interest of biochemists as a "natural pharmacy". The alkaloid epibatidine, a painkiller 200 times more potent than morphine, is made by some species of Poison dart frog, poison dart frogs. Other chemicals isolated from the skins of frogs may offer resistance to HIV infection. Dart poisons are under active investigation for their potential as therapeutic drugs. It has long been suspected that pre-Columbian Mesoamericans used a toxic secretion produced by the cane toad as a hallucinogen, but more likely they used substances secreted by the Colorado River toad (''Bufo alvarius''). These contain bufotenin (5-MeO-DMT), a psychoactive drug, psychoactive compound that has been used in modern times as a recreational drug. Typically, the skin secretions are dried and then smoked. Illicit drug use by licking the skin of a toad has been reported in the media, but this may be an urban myth. Exudations from the skin of the golden poison frog (''Phyllobates terribilis'') are traditionally used by native Colombians to poison the darts they use for hunting. The tip of the projectile is rubbed over the back of the frog and the dart is launched from a blowgun. The combination of the two alkaloid toxins batrachotoxin and homobatrachotoxin is so powerful, one frog contains enough poison to kill an estimated 22,000 mice. Two other species, the Kokoe poison dart frog (''Phyllobates aurotaenia'') and the black-legged dart frog (''Phyllobates bicolor'') are also used for this purpose. These are less toxic and less abundant than the golden poison frog. They are impaled on pointed sticks and may be heated over a fire to maximise the quantity of poison that can be transferred to the dart.Cultural significance
Frogs have been featured in mythology, fairy tales and popular culture. In traditional Chinese myths, the world rests on a giant frog, who would try to swallow the moon, causing the lunar eclipse. Frogs have been featured in religion, folklore, and popular culture. The ancient Egyptians depicted the god Heqet, protector of newborns, with the head of a frog. For the Mayan civilization, Mayans, frogs represented water, crops, fertility and birth and were associated with the god Chaac. In the Bible, Moses unleashes a Plagues of Egypt, plague of frogs on the Egyptians. Medieval Europeans associated frogs and toads with evil and witchcraft. The Brothers Grimm fairy tale ''The Frog Prince'' features a princess taking in a frog and it turning into a handsome prince. In modern culture, frogs may take a comedic or hapless role, such as Mr. Toad of the 1908 novel ''The Wind in the Willows'', Michigan J. Frog of Warner Bros. Cartoons, the Muppet Kermit the Frog and in the game Frogger.See also
* *References
Further reading
* * * Estes, R., and O. A. Reig. (1973). "The early fossil record of frogs: a review of the evidence." pp. 11–63 In J. L. Vial (Ed.), ''Evolutionary Biology of the Anurans: Contemporary Research on Major Problems''. University of Missouri Press, Columbia. * * * *External links
Media